Властивості рідини і газу
Курсовой проект - Физика
Другие курсовые по предмету Физика
ї з них:
Ця величина називається числом Фруда. Очевидно, що у випадку бігу води під атмосферним повітрям ми маємо просто . Подоба буде забезпечено тільки в тому випадку, якщо число Фруда для моделі дорівнює числу Фруда для реального обєкта (тобто, наприклад, швидкість моделі судна повинна бути зменшена пропорційно квадратному кореню зі зменшення розміру). Такого роду експериментальні дослідження зменшених моделей - звичайна практика при проектуванні судів і річкових гідротехнічних споруджень; більше того, у цей час методи моделювання поширюються на аналогічні гравітаційні завдання метеорології й океанографії.
Гідродинаміка Ейлера й Навье-Стокса.
Виводячи диференціальне рівняння руху ідеальної рідини, Леонард Ейлер думав, що сили, що діють на будь-яку поверхню в ній, так само як і в нерухливій рідині, перпендикулярні самої цієї поверхні. Таке припущення дозволило описати рух рідини аналітично. Однак іноді теорія ідеальної рідини Ейлера перестає працювати.
Реальна рідина відрізняється від ідеальної тем, що вона має внутрішнє тертя, або вязкістю. Два дотичні елементи рідини, що рухаються в тому самому напрямку, але з різними швидкостями, впливають один на одного. Сила взаємодії прискорює повільно, що рухається елемент, рідини й сповільнює більше швидкий. Ньютон припустив, що величина цієї сили (сила внутрішнього тертя) пропорційна різниці швидкостей елементів рідини. Закон грузлого тертя Ньютона говорить, що сила внутрішнього тертя F пропорційна зміні швидкості рідини v у напрямку, перпендикулярному руху, і залежить від площі S зіткнення елементів рідини. Коефіцієнт пропорційності в ньому називається коефіцієнтом динамічної вязкості ( n ).
F = n dv S
dy
Рідини, у яких внутрішнє тертя подібним чином залежить від зміни швидкості, називаються рідинами з лінійною вязкістю, або ньютонівськими рідинами.
Величину коефіцієнта динамічної вязкості Ньютон визначив за допомогою досвіду: пересуваючи по поверхні рідини плоску пластину з різною швидкістю, він помітив, що для підтримки певної швидкості потрібна сила, що при невеликій глибині рідини виявилася прямо пропорційна площі S і швидкості пластини v і обернено пропорційна глибині рідини h.
F = n v S
h
Незважаючи на те, що при збільшенні глибини рідини сила грузлого тертя пластинки не стає малої, ця формула досить точно описує взаємодію між дотичними елементами рідини. Чим більше різниця швидкостей, тим більше сила, з якої вони впливають один на одного, змушуючи пригальмовувати більше швидкі елементи й розганяючи повільні. У результаті відносний рух у рідині припиняється.
У більше строгому формулюванні лінійна залежність грузлого тертя від зміни швидкості руху рідини називається рівнянням Навье-Стокса. Воно враховує стискальність рідин і газів і справедливо не тільки поблизу поверхні твердого тіла, але й у кожній крапці рідини.
Вплив вязкості на картину плину.
Вязкість рідини й газу звичайно істотна тільки при відносно малих швидкостях, тому гідродинаміка Ейлера - це приватний граничний випадок більших швидкостей гідродинаміки Стокса. При малих швидкостях відповідно до закону грузлого тертя Ньютона сила опору тіла пропорційна швидкості. При більших швидкостях, коли вязкість перестає відігравати істотну роль, опір тіла пропорційно квадрату швидкості.
Цей критерій називається числом Рейнольдса й має вигляд.
число Рейнольдса - безрозмірна величина, що характеризує відносну роль сил вязкості.
Воно грає таку ж роль у моделюванні впливу вязкості, що й число Фруда при моделюванні гравітаційних ефектів, а тому є основою досвідів, проведених в аеродинамічних трубах з моделями літаків, і градуїровок витратомірів для рідин різної вязкості - загалом, при дослідженні всіх видів плинів по трубах і з обтіканням тіл у всіх випадках, коли домінує вплив вязкості. Якщо рівність чисел Фруда для моделі й натурного обєкта вимагало зменшення швидкості моделі у звязку з її зменшеними розмірами, то рівність чисел Рейнольдса, навпаки, вимагає, щоб швидкість моделі збільшувалася зі зменшенням її розмірів. Тому, щоб не потрібно було надмірно підвищувати швидкість в експериментах зі зменшеними моделями, часто застосовують текучі середовища з меншою вязкістю або більшою щільністю; так, в аеродинамічних трубах нерідко підвищують тиск до декількох атмосфер, що дозволяє знизити швидкість за рахунок підвищення щільності.
Турбулентний плин у трубах.
Плин грузлої рідини уздовж границі може виявитися нестійким стосовно малих збурювань, якщо число Рейнольдса перевищить деяке значення. Так, наприклад, плин у трубі постійного діаметра стійко до всіх збурювань, якщо число Рейнольдса менше приблизно 2000, і тоді формула Пуазейля дає співвідношення між перепадом тиску й швидкістю незалежно від щільності. Але коли число Рейнольдса перевищує зазначене критичне значення, будь-яке локальне збурювання викликає коливання швидкості або утворення завихрень, які швидко поширюються по всім потоці, створюючи безладний вторинний рух, називаний турбулентним плином. Через незліченні вихри турбулентний плин характеризується значно більшою витратою енергії (більше високими втратами тиску), чим стійке, або ламінарне, плин, і формула Пуазейля в цьому випадку заміняється формулою
де коефіцієнт f залежить від числа Рейнольдса й відносної шорсткості поверхні труби. У випад?/p>