Властивості рідини і газу
Курсовой проект - Физика
Другие курсовые по предмету Физика
водозливу, - потрібно спочатку надійно спроектувати водозлив, розрахований на максимально можливий потік; точно так само виміряти лагом швидкість судна в плаванні простіше, ніж заздалегідь указати потужність двигунів, які будуть потрібні новому судну для підтримки заданої крейсерської швидкості; надрукувати в газеті швидкість вітру й атмосферний тиск, обмірювані вчора, набагато легше, ніж пророчити погодні умови на завтрашній день. Коротше кажучи, щирий предмет гідроаеромеханіки - установлення співвідношень між різними характеристиками плину, що дозволяють визначити кожну з них, як тільки задані інші характеристики, від яких вона залежить.
Рівняння нерозривності.
Хоча гідроаеродинаміка заснована на трьох добре відомих в механіці законах збереження маси, імпульсу й енергії, формулювання цих законів у ній виглядають складніше. Наприклад, звичайне визначення закону збереження маси говорить, що маса системи тіл залишається незмінної. Для рідини, що тече в трубі, цей закон використовується у формі, називаної рівнянням нерозривності. Рівняння нерозривності - співвідношення між швидкістю плину, обємною витратою середовища й відстанню між лініями струму. Це рівняння виражає один з основних законів гідроаеромеханіки, відповідно до якого обємна витрата у всякій трубці струму, обмеженої сусідніми лініями струму, повинен бути в будь-який момент часу однаковий у всіх її поперечних перерізах. Оскільки обємна витрата Q дорівнює добутку швидкості поточного середовища V на площу A поперечного перерізу трубки струму, рівняння нерозривності має такий вигляд:
Q = V1A1 = V2A2
або ж vS = const ( v швидкість рідини, S площа перетину труби, по якій тече рідина. Зміст - скільки води вливається - стільки й повинне вилитися, якщо умови плину незмінні).
Тому там, де перетин великий і лінії струму розріджені, швидкість повинна бути мала, і навпаки. (Всі три частини цієї подвійної рівності повинні виражатися в одній і тій же системі одиниць. Так, якщо величина Q виражена в м3/з, те швидкість V повинна виражатися в м/с, а площа A у м2.)
Рівняння Бернуллі.
Одне з найважливіших рівнянь гідромеханіки було отримано в 1738 році швейцарським ученим Данилом Бернуллі. Йому вперше вдалося описати рух нестисливої ідеальної рідини (сили тертя між елементами ідеальної рідини, а також між ідеальною рідиною й стінками посудини відсутні). Рівняння Бернуллі має вигляд:
р + рv2 + pgh = const.
2
де р тиск рідини, р її щільність, V швидкість руху, g прискорення вільного падіння, h висота, на якій перебуває елемент рідини.
Відповідно до рівняння Бернуллі, у випадку сталого плину, для якого не мають істотного значення всі інші характеристики поточного середовища, крім щільності (питомої ваги), повний напір однаковий у всіх поперечних перерізах трубки струму. Якщо до отвору в стінці труби приєднати манометричну трубку, то рідина в такій трубці підніметься на висоту, рівну гідростатичному напору. Якщо манометричну трубку виставити назустріч потоку, то рідина в манометрі підніметься на додаткову висоту, рівну швидкісному напору. Трубка, що має одночасно торцеве й бічні манометричні отвори, називається трубкою Пито й використовується для визначення швидкості плину по обмірюваному швидкісному напорі. Трубки Пито входять у комплект вимірювального встаткування всіх літаків, а також широко застосовуються для вимірів швидкості плину в трубопроводах, в аеро- і гідродинамічних трубах.
Якщо швидкість плину дорівнює нулю (тобто середовище не рухається), то рівняння Бернуллі зводиться до простого рівняння гідростатики.
Відповідно до цього рівняння, збільшенню висоти в нерухливому середовищі рідини або газу відповідає рівне зменшення гідростатичного напору. Тому тиск у будь-якій крапці нерухливої рідини дорівнює глибині цієї крапки під вільною поверхнею, помноженої на питому вагу рідини. На основі цього співвідношення обчислюється тиск рідини на стінки резервуарів, а також проводиться аналіз плавучості й остійності морських і річкових судів.
У тих випадках, коли швидкість плину відмінна від нуля, рівняння Бернуллі разом з рівняннями нерозривності й закону збереження кількості руху дозволяє вирішувати практично важливі завдання - про витрату середовища, що тече через вимірювальні діафрагми, поверх вимірювальних і водоскидних водозливів і під затвори шлюзових галерей; про траєкторію струменя рідини; про форму, швидкість і силу хвиль, що діють на судна й хвилеломи. Хоча в таких завданнях звичайно розглядається біг води під атмосферним шаром повітря, аналогічні процеси гравітаційного характеру мають місце у випадку плину більше холодної (і, отже, більше щільної) води під більше теплої, як і інших рідин і газів різної щільності. Таким чином, водним потокам у ріках аналогічні океанські плини й вітри, оскільки всі гравітаційні явища підкоряються тим самим законам гідроаеромеханіки.
3. Гравітаційне моделювання
Число Фруда
Хоча багато завдань такого роду вирішуються із прийнятною точністю, існує багато інших складних завдань, аналітичне рішення яких поки неможливо. Проте задовільне рішення ряду таких завдань можна знаходити шляхом моделювання з використанням теорії подоби. Вплив сили ваги на картину потоку характеризується безрозмірною величиною (критерієм подоби), складеної з якоїсь характерної швидкості V, характерної довжини L, різниці питомих ваг верхніх і нижньої поточних середовищ і щільності одніє