Элементы топологии на уроках математики в школе
Дипломная работа - Педагогика
Другие дипломы по предмету Педагогика
или на любой другой двусвязной поверхности существуют карты, для раскрашивания которых требуется 7 красок, и семи красок хватает для раскрашивания любой карты. В случае если читателю нравится озадачивать других, пусть он нанесёт рис. 6 на бумажный тор (бублики малопригодны для картографии) и после небольшой предварительной болтовни его раскрасить. Как можно заметить, на рисунке семь областей, каждая из которых касается всех остальных (помните о склейках, указанных стрелками).
Следует объяснить, что области на противоположных сторонах, которые соприкасаются между собой вдоль участка склейки, должны быть окрашены в разные цвета. Даже в случае ленты Мёбиуса удалось доказать, что нужно не более чем 6 красок и что есть карты, для которых требуется ровно 6 красок. Если разбить полоску, как показано на рис. 7, а затем перекрутить её и склеить, то мы увидим, что при этом получится 6 областей, каждая из которых будет касаться всех остальных. Поскольку у листа Мёбиуса одна сторона, мы считаем, что он прозрачен: каждый участок имеет один и тот же цвет, независимо от того, с какого направления мы на него смотрим.
К проблеме четырёх красок подступались с разных сторон, из которых по-видимому, наиболее обещающей является формула Эйлера для многогранников, поскольку любую карту можно топологически преобразовать в некоторый многогранник, а формула, как мы видели ранее, приложима к любой фигуре, состоящей из граней (стран на карте), рёбер (границ) и вершин ( точек соприкосновения границ). Несмотря на изнурительные исследования, основная проблема не решена до сих пор, хотя в качестве её отходов получен ряд интересных теорем. В некотором смысле эту проблему можно было бы назвать проблемой трёх красок, ибо если бы нам удалось построить карту, для внешнего пояса которой потребовалось бы более трёх красок, то мы могли бы затем окружить её ещё одной областью, для чего нам понадобилась бы пятая краска.
Это означает не то, что для всей такой карты, за исключением лишь окружающей карту области, используют только 3 краски, а то, что во всех случаях мы должны быть в состоянии так перекрасить карту, чтобы для областей внешнего пояса потребовалось только 3 краски. В случае карты, изображённой на рис.8, мы начинаем раскрашивать сначала внутренние области: 1, 2 и 3, а затем, как на показано, окружающие их области; при этом мы начинаем с тех же красок 1, 2 и 3, но уже для х потребуется четвёртая краска, а для у пятая. Дабы этого избежать, мы должны отказаться от четвёртой краски для области х, закрасив этим цветом одну из внутренних областей, что позволит нам в случае пояса х обойтись тремя красками. Если мы найдём удачный метод удаления четвёртых красок для всех последовательно возникающих внешних поясов, то сможем решить эту часть проблемы.
Любой карте можно придать более единообразную форму, преобразовав её в то, что называется правильной картой такой, у которой в каждой точке соприкасается не более трёх областей. Это не повлияет на раскрашивание, поскольку при переходе к первоначальной карте окажется лишь, что несоприкасающиеся области соприкасаются в точке (но не по части границы!). Обычный способ состоит в том, чтобы заменить точку р, в которой соприкасается более трёх областей, новой областью А (рис.9). Теперь у нас образовалось 4 точки a, b, c, d, в каждой из которых соприкасаются только 3 области (страны). Если мы правильно раскрасим эту вторую карту, а затем удалим А, то в результате останется всё ещё правильно раскрашенная карта, с той оговоркой, что мы, быть может, используем 3 краски там, где окажется достаточно и двух. Мы принесли простоту в жертву единообразию вещь, порой полезная в математике.
Отметим то замечательное обстоятельство, что для некоторых поверхностей более сложного типа, чем плоскость или сфера, соответствующие, соответствующие теоремы действительно были доказаны, так что, как это ни парадоксально, анализ более сложных (в геометрическом отношении) поверхностей в данном случае проводится легче, чем более простых. Как было сказано выше, для случая поверхности тора, имеющей вид бублика, что всякая нарисованная на ней карта может быть раскрашена семью красками и что, с другой стороны, на ней мыслимы такие карты, составленные из семи областей, что каждая область соприкасается с остальными шестью.
Головоломка. Вам требуется раскрасить карту ( рис. 10). Площадь каждой области равна 8м2, за исключением верхней, у которой площадь составляет 16м2. У вас есть следующие краски: КРАСНАЯ, которой хватает ровно, на 24м2; ЖЁЛТАЯ, которой хватает на 24м2; ЗЕЛЁНАЯ, которой хватает на 16м2, и СИНЯЯ, которой хватает на 8м2. Результат должен удовлетворить обычному требованию: соприкасающиеся области нельзя закрашивать в одинаковый цвет. Остерегайтесь единорогов.
4. Фракталы.
Объекты, которые мы теперь называем фракталами, впервые появились в воображении математиков начала прошлого столетия. И тогда вряд ли могло прийти в голову, что в окружающей нас природе встретится что-либо похожее на эти необычные и изысканные кривые. И хотя в этом параграфе речь пойдёт в основном о физических системах, начать придётся с маленького и очень нестрогого математического введения.
4.1. Самоподобные геометрические объекты.
Самоподобной геометрической фигурой (телом) будем называть фигуру, которую можно разрезать на конечное число одинаковых фигур, подобных ей самой. Примеры