Формирование познавательной потребности у учащихся средствами информационных технологий

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

?ятий и определений.

Для этого нами был проведен интегрированный урок.

Мотивируя применение интегрированных уроков необходимо отметить, что разнообразие занимательных форм (игры-путешествия, состязания, конкурсы, шарады, загадки) на уроках создаёт положительный эмоциональный фон деятельности, располагает к выполнению тех заданий, которые учащиеся считают трудными и непреодолимыми.

Творческие задания представляют собой один из путей, с помощью которого происходит у детей формирование познавательного интереса.

Познавательная деятельность учащихся в обучении, какой бы характер она не носила, какой бы активной она ни была, всегда должна направляться и организовываться учителем.

Тема: "Применение интеграла при решении физических задач" (см. приложение 1)

Цель: продолжить формирование умений самостоятельно в комплексе применять знания, умения и навыки, осуществлять их перенос в новые условия.

Задачи урока:

Обучающие: способствовать формированию знаний, умений по данной теме;

Развивающие: умственная деятельность (выполнять операции анализа, синтеза, делать выводы, выделять существенные признаки объектов);

Воспитательные: воспитывать умение организовать свою деятельность, формирование ценностной ориентации, мировоззрения.

Оборудование: компьютер, мультимедиа проектор, экран.

Содержание урока: данного урока нет в тематическом планировании, но нами предлагается использовать данную разработку изучении темы 7. Учащиеся знакомятся с примерами применения интеграла в физике и геометрии.

План урока:

  1. Организация начала урока.
  2. Постановка проблемы урока.
  3. Актуализация ЗУН, необходимых для творческого применения знаний
  4. Формирование новых понятий и способов действий
  5. Обобщение и систематизация знаний и способов деятельности
  6. Усвоение образца комплексного применения ЗУН
  7. Применение знаний умений и навыков в новых условиях
  8. Подведение итогов урока

Ход урока:

  1. Организация начала урока.
  2. Постановка проблемы урока. На прошлом уроке мы ознакомились с геометрическими задачами, которые решаются при помощи интеграла. Но интеграл применим не только в математике, другие области науки также используют его и сегодня мы с вами проверим это на примере такой науки как физика.
  3. Актуализация ЗУН, необходимых для творческого применения знаний

Физические величины, вычисляемые с помощью интеграла, можно разделить на два типа, в зависимости от того, как они естественно определяются. К первому типу относятся "первичные" величины (длина пути, масса, количество электричества, количество теплоты и т. п.), т. е. такие величины, для которых другие, связанные с ними ("вторичные") величины (соответственно скорость, линейная плотность, величина тока, удельная теплоемкость и т. п.) определяются как производные этих величин. Ко второму типу относятся такие, которые определяются естественным образом как интегралы от "первичных" по отношению к ним величин (например, площадь, работа). Для первого типа величин интегральная формула для их вычисления может и должна быть доказана, опираясь на известное из предыдущего материала определение "вторичной" величины как производной от данной "первичной". Для второго типа интегральная формула появляется по определению.

4. Формирование новых понятий и способов действий

При введении понятия интеграла как предела интегральных сумм довольно наглядным и понятным для учащихся является пример задачи о давлении жидкости на стенку.

Задача. Бассейн высоты H наполнен водой. Вычислить давление воды на прямоугольную стенку бассейна с основанием прямоугольника, равным а.

Разделим высоту Н на n равных частей (?h). Стенка разделится на "элементы". Так как кубометр воды весит тонну, то давление столба жидкости высоты hi м, имеющего сечение 1 м2, равно hi тоннам.

Давление же воды на элемент, находящийся на глубине hi, равно произведению hi на площадь элемента: hia ?h. Обозначим произведение hia через F(hi). Тогда величина давления на всю стенку приближенно равна

 

Pn? F1(h1)?h1+…+Fn(hn) ?hn.

 

Данную сумму называют интегральной суммой функции F(h) на отрезке [0; H]. При этом предполагается, что функция F(h) непрерывна на отрезке [0; H] и может принимать любые значения. Если и высоты "элементов" стремятся к нулю, то точное выражение суммы равно . Его называют определенным интегралом от функции F(h) на отрезке [0; H] и обозначают .

Далее понятие определенного интеграла обобщается на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b].

Рассмотрим несколько задач с физическими моделями, где интеграл определяется как приращение первообразной.

1. Задача о перемещении точки.

Пусть v=v(t) скорость прямолинейного движения точки, заданная на некотором промежутке времени [t1; t2]. При этом пусть v(t)>0. Как выразится длина пути, пройденного точкой за данный промежуток времени?[5]

Обозначим координату движущейся точки в момент t через S(t). Тогда, так как движение при v>0 происходит только в положительном направлении (или иначе, т. к. S(t) функция возрастающая, ввиду того, что ), то искомое расстояние будет выражаться числом S(t2)-S(t1). С другой стороны S(t) есть первообразная функции v(t) (). Таким образом вычисление длины пути, пройденного точкой за данный промежуток времени, сводится к отысканию первообразной S(t) функции v(t), т. е. к интегрированию функции v(t).

Разность S(t2)-S(t1) называют интегралом от функ