Физические принципы спектрофотометрии. Устройство спектрофотометра

Дипломная работа - Физика

Другие дипломы по предмету Физика

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

им. А.М. Горького

Физический факультет

Кафедра общей и молекулярной физики

 

 

 

 

 

 

 

 

Курсовая работа

Физические принципы спектрофотометрии.

Устройство спектрофотометра

 

 

 

 

 

 

 

 

Екатеринбург

 

Содержание

 

Введение

1. Литературный обзор

1.1 История развития оптической спектрометрии

1.2 Физические основы, на которых построена методика измерений

1.2.1 Закон Бугера - Ламберта - Бера

1.3 Поглощение в твердых телах и молекулах

1.3.1 Зонная теория кристаллов

1.3.2 Теория кристаллического поля

1.3.3 Теория молекулярных орбиталей

2. Абсорбциометрические приборы

2.1 Типы абсорбционных спектрометров

2.2 Типы абсорбционных спектрометров видимого и ближнего ультрафиолетового диапазона

2.2.1 Колориметры и фотоколориметры

2.2.2 Спектрофотометры

2.2.3 Двуволновые спектрофотометры

2.2.4 Спектрофотометры с фотодиодной решеткой

3. Устройство и основные узлы спектрофотометра

3.1 Устройство спектрофотометра

3.2 Основные узлы спектрофотометра

3.2.1 Источник света

3.2.2 Кюветы

3.2.3 Диспергирующий элемент

3.2.4 Монохроматоры

4. Экспериментальная часть

Заключение

Список литературы

Введение

 

Под оптической спектроскопией понимаются все методы количественного и качественного анализа, основанные на взаимодействии света с живой и неживой материей.

Термин свет означает электромагнитное излучение от дальней области ультрафиолетового диапазона до ближней области инфракрасного диапазона. На протяжении более чем двухсот лет оптическая спектроскопия применяется в различных областях науки, производства и медицины, в том числе в химии, биологии, физике и астрономии. Высокая специфичность оптической спектроскопии объясняется тем, что каждое вещество обладает своими спектральными свойствами, отличными от спектральных свойств других веществ. Вещества можно анализировать как в количественном, так и в качественном аспектах. В отличие от других методов спектроскопии, таких как ЯМР (ядерный магнитный резонанс), ЭПР (электронный парамагнитный резонанс), Мессбауэровской или масс-спектрометрии, для анализируемых с помощью оптической спектроскопии образцов практически нет ограничений. Измерения различных оптических параметров в зависимости от длины волны или энергии излучения ("спектр") или временных параметров ("кинетика") обеспечивают ценную информацию, которую не всегда можно получить другими аналитическими методами. Оптический спектральный анализ - это хорошо развитый метод. Однако рынок спектрофотометров все время расширяется в связи с появлением новых применений метода. В зависимости от предъявляемых требований спектрофотометры существенно различаются по размерам, форме, применимости и, в конечном счете, по стоимости. Поэтому современная тенденция заключается скорее в использовании специализированных спектрофотометров умеренной стоимости, а не громоздких, доступных для всевозможных применений "многоцелевых установок" с наилучшими характеристиками.

Цели работы:

1.изучение теоретических основ оптической спектрофотометрии

2.ознакомление с устройством и принципами работы спектрофотометра, приобретение практических навыков работы на спектрофотометре UV-1700 Shimadzu (Япония).

.исследование спектральной зависимости интенсивности сигнала Nd3+ от его концентрации в берилловых стеклах, обогащенных Nd3+.

1. Литературный обзор

 

1.1 История развития оптической спектрометрии

 

Слово "спектр" в переводе с латинского означает "появление" или "схема". Исаак Ньютон в 1666 г. первым с помощью призмы расщепил солнечный свет на спектральные составляющие (рис.1). В 1758 г. Маркграф впервые, используя окраску цвета пламени, открыл способ визуального определения вещества. В 1802 г. английский физик Волдастон объяснил эксперимент Ньютона с призмой, усовершенствовал его и впервые наблюдал многочисленные темные линии в солнечном спектре. В то же время Гершель и Тальбот проводили эксперименты со светом пламени, и в 1834 г. Тальбот спектрально разделил красный цвет пламени стронция и красный цвет лития, что считается зарождением аналитической оптической спектроскопии.

 

Рис.1 Исаак Ньютон первым с помощью стеклянной призмы расщепил параллельный солнечный свет на его составляющие в спектр

 

Этот новый метод исследования, названный оптической спектроскопией, развивается с 1834г. до настоящего времени. Особое внимание следует уделить работе в этой области физики Фраунгофера, который разработал спектроскопию на дифракционных решетках и получил 1500 линий в спектре солнечного света.

спектрофотометрия спектрофотометр оптический измерение

До 20-го века не было теорий, которые могли бы удовлетворительно объяснить сложное поведение, проявляемое всеми веществами. Наиболее весомый вклад в сегодняшнее понимание спектральных проявлений внесли следующие ученые. В 1885 г. швейцарский ученый Бальмер открыл серию так называемых спектральных