Физические принципы спектрофотометрии. Устройство спектрофотометра

Дипломная работа - Физика

Другие дипломы по предмету Физика

"линий Бальмера" в спектре водорода. В 1897 г. английский ученый Томпсон открыл электрон, а в 1911 г. его соотечественник Эрнест Резерфорд открыл атомное ядро. В 1900 г. Макс Планк сформулировал первые законы квантовой теории. Вернер Гейзенберг (1932 г.) и Эрвин Шредингер (1933 г.) получили Нобелевскую премию за пионерские работы по квантовой механике. В дальнейшем концепцию квантовой механики развивали Поль Дирак и Вольфганг Паули (1945 г.), которые также получили Нобелевскую премию.

Так как история развития науки переплетена с историей развития методов измерений и анализа, то история оптической спектроскопии в большей степени отражена историей астрономии и, следовательно, историей атомной спектроскопии. Только в конце 19-го века молекулярная спектроскопия становится мощным аналитическим методом. Например, с помощью спектрофотометра, способного обнаруживать характерные "полосы" гемоглобина, можно различить кровь и красители красного цвета, так что сегодня криминалисты могут найти убийцу по маленькой капле крови.

На протяжении многих десятилетий в спектроскопии использовались обычные вольфрамовые лампы накаливания, призмы, дифракционные решетки и детекторы света, которые ограничивали результаты узким диапазоном видимой области между 500 и 700 нм.

До 40-х годов 20-го века было доступно всего несколько типов коммерческих спектрофотометров (спектрофотометр "Дженерал Электрик", спектрофотелометр Кенко, модель DM Колеман), к тому же на них было трудно работать, и они производились в ограниченном количестве. В то время "измерение" поглощения для определения концентрации производилось визуально последовательным сравнением двух полей, подобно тому, как это делается сейчас для проверки цветного видения аномалоскопом Нагеля. Знаменитый фотометр Pulfrich Цейса (было изготовлено несколько тысяч в Германии) нудно и долго работал таким способом с помощью так называемых S-фильтров в видимом диапазоне (интерференционные фильтры с полушириной полосы пропускания 15-20 нм). За 1941 г. было опубликовано более 800 статей по определению концентрации клинически важных компонентов крови и других жидкостей организма с использованием подобных спектрофотометров.

Рынок спектрального аналитического оборудования стал быстро развиваться и совершенствоваться только после второй мировой войны. Вследствие лучшего разрешения и меньшего количества рассеянного света вместо призм стали использоваться дифракционные решетки и двойные монохроматоры с автоматическим сканированием, дающие исправленные спектры, что способствовало их использованию в рутинной аналитической работе. Существенное снижение рассеянного света привело к совершенствованию детектирующих возможностей спектрофотометров на 4-5 порядков величины.

Вскоре на рынке появились специализированные фотометры, например для радиометрии, колориметрии или двуволнового анализа. В период значительного снижения цен на компьютеры с конца 70-х годов спектрометры стали изготавливать на базе микрокомпьютеров. Это не только облегчило измерения, но и позволило проводить анализ в непрерывном режиме.

 

1.2 Физические основы, на которых построена методика измерений

 

1.2.1 Закон Бугера - Ламберта - Бера

Задачей абсорбционной спектрометрии является определение того, в какой степени образец пропускает свет определенной длины волны ?. В этом контексте "свет" определяется как энергия спектрального излучения Фе (?) (Вт нм-1) или как плотность потока излучения на единицу поверхности (Е м-2 с-1). Для упрощения и без применения специфических единиц измерения света обозначим интенсивность падающего света в точке x=0 как I0, а интенсивность в точке x - как I. Бугер в 1729 г. и Ламберт в 1760 г. установили, что ослабление света, проходящего через прозрачную среду, пропорционально интенсивности света I и толщине исследуемого образца dx (закон Бугера - Ламберта):

 

 

Введя коэффициент поглощения (экстинкции) ? (?), получим:

 

(1)

 

Закон Бугера - Ламберта применим только при особых условиях, которые не всегда выполняются, в особенности при исследовании биологических образцов, таких как белки или различные суспензии. Условия, при которых выполняется закон Бугера - Ламберта:

  • падающий свет должен быть монохроматическим и коллимированным (параллельным);
  • исследуемые молекулы должны быть диспергированы до молекулярного, т.е. гомогенного уровня, они не должны рассеивать свет и взаимодействовать друг с другом;
  • рассеяние и отражение от поверхности образца подобно поглощению также уменьшают интенсивность света, поэтому они также должны быть исключены.

В дополнение к этому в 1852 г. Бер обнаружил, что для большинства растворов поглощающих молекул коэффициент пропорциональности ? (?) в уравнении (1) сам пропорционален концентрации с определяемой молекулы. Объединив открытие Бера с законом Бугера - Ламберта, получим закон Бугера - Ламберта - Бера (обычно сокращаемого до закона Ламберта - Бера):

 

(2)

 

Интегрирование уравнения (2) по всей толщине x образца дает

 

(3)

 

где постоянная интегрирования I0 - интенсивность падающего на образец света, а I - интенсивность света в любом положении x внутри образца, т.е. с увеличением толщины образца интенсивность света уменьшается экспоненциально. В логарифмической форме уравнение (3) будет име