Теория подобия

Информация - Разное

Другие материалы по предмету Разное

?теля.

Формулы (5) и (6) сохранят свою справедливость и в том случае, если вместо уравнения (1) мы возьмем уравнение

,

где f(?) есть любая функция угла ?. Вообще справедливость формул (5) и (6) вытекает из единственного условия, которое состоит в том, что состояние движения определяется параметрами

t, l, g, m, ?0.

Для установления этой системы параметров нам послужили уравнения движения, но ее можно указать и не прибегая к уравнениям движения. В самом деле, для характеристики маятника надо указать l и m. Далее необходимо указать g, так как сущность явления определяется силой тяжести. Наконец, необходимо указать ?0 и t, так как конкретное движение и состояние движения определяются углом крайнего отклонения ?0 и рассматриваемым моментом времени t.

Истечение тяжелой жидкости через водослив

Рассмотрим задачу о струйном движении тяжелой жидкости через водослив (рис. 2), который представляет собой вертикальную стенку с треугольным отверстием, расположенным симметрично относительно вертикали, причем угол отверстия ? равен 90. Жидкость вытекает под напором h, который равен высоте уровня жидкости над вершиной треугольника на далеких расстояниях от отверстия водослива. Для простоты мы примем, что сосуд, в котором находится жидкость, очень велик, и поэтому движение жидкости можно iитать установившимся. При струйном движении жидкости основное значение имеют свойства инерции и весомости, которые характеризуются значениями плотности ? и ускорения силы тяжести g.

Рис. 2. Перетекание тяжелой жидкости через водослив.

Установившееся течение жидкости через рассматриваемый водослив полностью определяется следующими параметрами:

?, g, h.

Вес жидкости Q, вытекающий через отверстие водослива в единицу времени, может быть функцией только этих параметров

Q = f(?, g, h).

С помощью теории размерности нетрудно найти вид этой функции. В самом деле, размерность Q равняется кгс/с. Комбинация также имеет размерность кгс/с. Поэтому отношение

является безразмерной величиной. Это отношение является функцией величин ?, g, h, из которых нельзя образовать безразмерной комбинации, поэтому можно написать

или

,(9)

где С есть абсолютная постоянная, которую проще всего определить из опыта. Полученная формула полностью определяет зависимость количества протекающей жидкости от напора h и от плотности ?.

Совокупность рассматриваемых движений можно расширить, допуская водосливы с различными углами ?. В этом случае система определяющих параметров дополняется углом ?, и формула (9) примет вид

, (10)

т. е. коэффициент С будет зависеть от угла ?.

Если водослив имеет прямоугольную форму шириной b, то система определяющих параметров будет

?, g, h, b.

Все безразмерные величины определяются параметром h/b. Формула (9) в этом случае заменится следующей:

. (11)

Функцию f(h/b) можно определить опытным путем, наблюдая течение через водослив различной ширины b, но с постоянным h. Определив таким способом функцию f(h/b), формулу (11) можно применять к случаям постоянной ширины b=const, но с различным напором h, т. е. к случаям, в которых опыт не производился.

Этот пример показывает, что соображения, полученные с помощью метода размерности, могут приносить большую пользу при постановке опытов, позволяя ограничивать их количество и получать благодаря этому экономию не только в средствах, но и во времени. Изменение одних величин можно заменять в опытах изменением других величин. На основе опытов, произведенных с водой, можно дать иiерпывающие ответы о явлении вытекания нефти, ртути и т. д.

  1. Заключение.

Три теоремы подобия составляют главную основу теории подобия.

Вот краткое содержание изложенной теории подобия:

1)Подобные явления протекают в геометрически подобных системах и описываются буквально одинаковыми уравнениями связи.

Эти уравнения должны быть безусловно или условно однородными.

2)Условно однородными физические уравнения делаются присоединением к ним обусловливающих равенств, которые устанавливают равенство единице индикаторов подобия, получающихся из уравнений, или, что то же, одинаковость для подобных явлений критерием подобия.

3)Однородные уравнения могут быть представлены как функции степенных комплексов (критериев) и симплексов.

Такие критериальные уравнения численно одинаковы для всей группы подобных явлений.

4)Подобны те явления, уравнение связи которых буквенно одинаковы и условия однозначности которых подобны, т. е. у которых одноименные моноваленты (величины, входящие в условия однозначности) находятся в численно постоянном отношении, а одноименные моновалентные (определяющие) критерии одинаковы.

Теория подобия дает, следовательно, общие методические указания, как поступать в каждом отдельном случае при анализе уравнений, описывающих явление, при постановке и обработке данных опыта над ним и при распространении результатов опыта на другие явления. Если же дана натура и исследовать ее хотят на модели, то теория подобия содержит методические указания по раiету и построению модели, подобной натуре.

Основные методические указание о применении теории подобия к опыту, будь то физическое экспериментирование или техническое моделирование, состоит в следующем.

При исследовании явления надо установить для него уравнения связи, дающие взаимную связь физических величин, участвующих в явл