Безкорпусная герметизация полупроводниковых приборов
Информация - Разное
Другие материалы по предмету Разное
идкость подогревают до 5070 С. Полупроводниковые пластины помещают на вертикальные диск центрифуги, имеющей частоту вращения 200600 об/мин. Возникающие при вращении центробежные силы способствуют удаления загрязнений с поверхности пластин. Вертикальное расположение пластин исключает возможность попадания на них капель промывочной воды после ограничения отмывки.
Гидромеханическая отмывка это комплексный способ удаления микроскопических загрязнений с полированной поверхности пластин проточной водой и мягкими вращающимися щётками или кистями. Кисти изготовляют из беличьего меха, а щётки из искусственных материалов (капрона, нейлона). Крепление пластин осуществляется вакуумным присосом. Деионизованную воду подают на пластины под давлением 50200 кПа. При расходе воды на 1Л/ мин длительность процесса 57 минут. Предварительно, чтобы ослабить связи загрязнений с поверхностью и облегчить из механическое удаление, пластины обрабатывают в кислотах или растворителях.
Основные недостатки гидромеханической отмывки является загрязнение кистей и щёток и, следовательно, перенос загрязнений с одной партии обрабатываемых пластин на другую. Поэтому кисти и щётки надо регулярно промывать, а это трудоёмко.
Отмывка в ультразвуковых ваннах.
Применение ультразвуковых колебаний значительно повышает эффективность обезжиривания, травления и промывки деталей в моющих растворах и воде. При распространении ультразвуковых волн в жидкости возникают так называемые звуковые (акустические) потоки, которые имеют вихревой характер и скорость распространения до сотен сантиметров в секунду, интенсивно перемешивают жидкость и способствуют очистке поверхности. Однако наиболее важным фактором воздействием ультразвуковых колебаний на жидкую среду является возникновение кавитации.
Кавитация обусловлена наличием в реальных жидкостях множества микроскопических газовых пузырьков и мельчайших твёрдых частиц, которые служат её центрами и зародышами. Под действием ультразвукового поля газовые пузырьки периодически расширяются и сжимаются , а некоторые захлопываются кавитируют. Кавитация возникает при колебании пузырьков определённого диаметра. Так, достаточно крупные пузырьки под действием ультразвуковых колебаний попеременно сжимаются и расширяются, не захлопываясь, поднимаются на поверхность жидкости и выделяются из неё. В то время как пузырьки диаметром меньше 60 мкм также не захлопываются, но, совершая колебательные движения, оказывают очищающее действие на поверхность полупроводниковых пластин как своеобразные механические скребки. При захлопывании пузырьков возникают мгновенные местные давления, достигающие десятков тысяч килопаскалей, которые отрывают от поверхности адсорбируемые загрязнения.
Процессы удаления в ультразвуковом поле растворимых и нерастворимых загрязнений протекают по-разному. При очистке от растворимых загрязнений главную роль играет перемещение моющей жидкости. При этом акустические потоки ускоряют процесс растворения загрязнений и обеспечивают быстрый отвод их от очищаемой поверхности. При очистке нерастворимых загрязнений главную роль играет из механическое разрушение в результате кавитации. При этом под действием высоких давлений, возникающих при захлопывании пузырьков, происходит растрескивание плёнок поверхностных загрязнений и частичное отслаивание их от очищаемой поверхности. Колеблющиеся газовые пузырьки проникают под отслоившиеся плёнки , отрывают их от поверхности и частицы загрязнений уносятся акустическим потоками.
Важным преимуществом ультразвуковой обработки является способность кавитационных пузырьков проникать в глубокие поры и канавки деталей сложной конструкции и конфигурации, которые не поддаются очистке никакими другими способами.
Эффективность ультразвуковой очистке зависит от частоты и мощности ультразвуковых колебаний, температуры и состава раствора, степени и характера загрязнений, а также времени обработки.
Наиболее интенсивно ультразвуковая обработка происходит при частотах 2040 кГц. Это объясняется тем , что при таких частотах газовые пузырьки имеют большие размеры и при кавитации выделяют больше энергии. Кроме того, под действием этих частот вибрируют и сами образцы, что также способствует очистке их поверхности. При частотах ниже 20 кГц звук становиться слышным , поэтому их не применяют.
Для очистки малогабаритных и легкодиформируемых изделий предпочтительны ультразвуковые колебания частотой около 400кГц, так как при низких ультразвуковых частотах образцы могут деформироваться или разрушиться. При высоких ультразвуковых колебаниях очистка происходит под действием вихревых акустических потоков , кавитация отсутствует вибрация обрабатываемых образцов незначительна.
Повышение частоты колебаний уменьшает длину звуковой волны и, следовательно, увеличивает ее проникающую способность. Поэтому высокочастотные ультразвуковые колебания обеспечивают высокое качество очистки изделий, имеющих отверстия, канавки и другие углубления; кроме того, значительно уменьшается масса и размеры ультразвуковых генераторов.
При частотах около 400 Гц эффективность очистки сохраняется на достаточно большом расстоянии от источника колебаний , в то время как при низких она резко падает с увеличением этого расстояния, что вызвано значительными п?/p>