Современные аппараты позитронно-эмиссионной томографии

Контрольная работа - Медицина, физкультура, здравоохранение

Другие контрольные работы по предмету Медицина, физкультура, здравоохранение

Министерство образования и науки Украины

Открытый международный университет развития человека Украина

Инженерно-технический институт

Кафедра Электронная бытовая аппаратура

 

 

 

 

 

 

 

 

Практическая работа

по предмету: Основы строения и применения биотехнических и медаппаратов

по теме: Современные аппараты позитронно-эмиссионной томографии

 

 

 

 

Выполнил ст. гр. ЕА-83Е

Смирнов С.В.

Проверил преподаватель

Богомолов М.Ф.

 

 

 

 

 

Киев 2009

Позитро?нно-эмиссио?нная томогра?фия (позитронная эмиссионная томография, сокращ. ПЭТ), она же двухфотонная эмиссионная томография - радионуклидный томографический метод исследования внутренних органов человека или животного. Метод основан на регистрации пары гамма-квантов, возникающих при аннигиляции позитронов. Позитроны возникают при позитронном бета-распаде радионуклида, входящего в состав радиофармпрепарата, который вводится в организм перед исследованием.

Позитронно-эмиссионная томография - это развивающийся диагностический и исследовательский метод ядерной медицины. В основе этого метода лежит возможность при помощи специального детектирующего оборудования (ПЭТ-сканера) отслеживать распределение в организме биологически активных соединений, меченных позитрон-излучающими радиоизотопами. Потенциал ПЭТ в значительной степени определяется арсеналом доступных меченых соединений - радиофармпрепаратов (РФП). Именно выбор подходящего РФП позволяет изучать с помощью ПЭТ такие разные процессы, как метаболизм, транспорт веществ, лиганд-рецепторные взаимодействия, экспрессию генов и т. д. Использование РФП, относящихся к различным классам биологически активных соединений, делает ПЭТ достаточно универсальным инструментом современной медицины. Поэтому разработка новых РФП и эффективных методов синтеза уже зарекомендовавших себя препаратов в настоящее время становится ключевым этапом в развитии метода ПЭТ.

На сегодняшний день в ПЭТ в основном применяются позитрон-излучающие изотопы элементов второго периода периодической системы:

углерод-11 (T= 20,4 мин.)

азот-13 (T=9,96 мин.)

кислород-15 (T=2,03 мин.)

фтор-18 (T=109,8 мин.)

Фтор-18 обладает оптимальными характеристиками для использования в ПЭТ: наибольшим периодом полураспада и наименьшей энергией излучения. С одной стороны, относительно небольшой период полураспада фтора-18 позволяет получать ПЭТ-изображения высокой контрастности при низкой дозовой нагрузке на пациентов. Низкая энергия позитронного излучения обеспечивает высокое пространственное разрешение ПЭТ-изображений. С другой стороны, период полураспада фтора-18 достаточно велик, чтобы обеспечить возможность транспортировки РФП на основе фтора-18 из централизованного места производства в клиники и институты, имеющие ПЭТ-сканеры (т. н. концепция сателлитов), а также расширить временные границы ПЭТ-исследований и синтеза РФП.

Компания Siemens AG в своих ПЭТ/КТ устройствах применяет сцинтилляционные детекторы на основе монокристаллов оксиортосиликата лютеция (Lu2SiO5, LSO).

Изобретатели: Майкл Тер-Погосян совместно с Дж. Эуджен-Робинсон, К. Шарп Кук. [1]

Позитронно-эмиссионная томография (сокращенно ПЭТ) является одним из самых информативных методов, применяемых в ядерной медицине.

В основе принципа позитронно-эмиссионной томографии лежит явление регистрация двух противоположно направленных гамма-лучей одинаковых энергий, возникающих в результате аннигиляции. Процесс аннигиляции происходит в тех случаях, когда излученный ядром радионуклида (радиоизотопа) позитрон встречается с электроном в тканях пациента.

Радиофармпрепараты, использующиеся при проведении позитронно-эмиссионных исследований представляют собой вещества, участвующие в различных метаболических процессах. При производстве радиофармпрепаратов для ядерной медицины, некоторые атомы заменяются на их изотопы. Особенностью радиофармпрепаратов, применяемых в позитронно-эмиссионной томографии является то, что при их производстве используются короткоживущие радиоизотопы, которые должны производиться в непосредственной близости от места проведения исследования. В Европе существуют специальные службы скоростной доставки радиофармпрепаратов для позитронно-эмиссионной томографии от мест их производства. Для производства радиофармпрепаратов используются специализированные медицинские циклотроны и радиофармлаборатории.

Первые клинические позитронно-эмиссионные томографы появились в начале 70-х годов прошлого столетия, однако только к концу 70-х появились первые коммерческие модели томографов. Первые аппараты были оборудованы малым числом детекторов. Не было возможности одновременного сбора информации для нескольких срезов, толщина срезов была большая. Но даже отсутствие возможности детализации анатомических структур по данным ПЭТ, не смогло задержать распространение методики в клиниках. Метод позволял получать истинно функциональные изображения, основанные на избранных метаболических цепях.

Исходно предполагалось, что основным применением ПЭТ станет кардиология, однако в настоящее более 90% исследований составляет онкология. Расширяются возможности позитронно-эмиссионной томографии для диагностики в неврологии.

Бурное развитие позитронно-эмиссионной томографии обусловлено тем, ч?/p>