Решение задачи повышения надежности резервирования

Дипломная работа - Математика и статистика

Другие дипломы по предмету Математика и статистика

 

 

 

 

 

 

 

 

 

 

 

 

Решение задачи повышения надежности резервирования

 

Введение

 

Данная дипломная работа посвящена решению задачи повышения надежности резервирования компонентов стендовой информационно-управляющей системы для проведения огневых испытаний жидкостных ракетных двигателей. Актуальность данной тематики состоит в том, что не существует универсальных формализованных методов, алгоритмов, программ, позволяющих автоматизировать процесс управления надежностью для любой сложной технической системы на всех этапах ее жизненного цикла. Основная сложность задачи обусловлена ее многокритериальностью. Решение таких задач требует разработки специальных алгоритмов и методов решения, которые не всегда удается получить. Поэтому решение данной задачи было решено искать с помощью универсальных алгоритмов эволюционного моделирования, которое заключается в замене моделирования сложного объекта моделированием его эволюции. Эволюционные методы в отличие от точных методов математического программирования позволяют находить решения, близкие к оптимальным, за приемлемое время

Таким образом, целью данной работы является реализация приложения, позволяющего с помощью алгоритмов эволюционного моделирования получать оптимальные или близкие к оптимальным решения.

Для достижения поставленной цели были выполнены следующие этапы:

.Изучение сути проблемы данной задачи;

.Изучение основы теории надежности;

.Изучение математической модели данной задачи;

.Разработка алгоритмов решения задачи;

.Программная реализация;

.Тестирование программы.

1. Суть проблемы повышения надежности резервирования компонентов стендовой информационно-управляющей системы для проведения огневых испытаний жидкостных ракетных двигателей

 

.1 Общие сведения о надежности аппаратных средств и методах резервирования

 

При проведении огневых испытаний жидкостных ракетных двигателей (ЖРД) предъявляются особые требования к безотказности технических средств автоматизированных систем управления технологическими процессами (АСУТП). Одними из основных показателей безотказности технических средств АСУТП являются среднее время наработки на отказ и вероятность безотказной работы.

Одним из самых радикальных способов повышения безотказности (надежности) является резервирование. В промышленной автоматизации наибольшее распространение получили следующие методы резервирования: резервирование замещением один из двух (1оо2 - 1 out of 2) и метод мажоритарного голосования два из трех (2оо3). Системы без резервирования классифицируются как 1оо1.

 

1.2 Архитектура систем управления огневыми испытаниями ЖРД

 

Системой управления называется комплекс устройств, посредством которых осуществляется запуск, останов, изменение режимов работы и контроль параметров двигателя. В основу системы управления положена релейная автоматика. Основой релейной автоматики являются дискретные ключевые элементы, обеспечивающие подачу и снятие команд управления и имеющие состояния: замкнут, разомкнут. Ключевой элемент является одним из звеньев канала (тракта) управления.

Высокие требования, предъявляемые к безотказности систем управления испытаниями ЖРД относятся в первую очередь к надежности релейной автоматики. Так как ключевой элемент имеет только два состояния, то и видов отказов может только два: короткое замыкание (КЗ) и обрыв. Ключевой элемент обычно представляет собой электромагнитное реле или полупроводниковый прибор (транзистор).

На рис. 1 представлена структурная схема резервирования 1оо2 для ключевых элементов. Условные обозначения: КУ - команда дискретного управления; ИП- источник питания; К1 - ключ; ОУ - объект управления.

 

Рис. 1. Резервирование ключевых элементов по схеме 1оо2

 

На рис. 1 а ключи объединены по схеме ИЛИ. Недостатком данной схемы является то, что при возникновении отказа типа КЗ невозможно снять команду с объекта управления. Схема представленная на рис. 1 б нечувствительна к отказам типа КЗ из-за наличия блока переключения на резерв. Однако данной схеме также присущи недостатки: блок переключения на резерв должен быть абсолютно надежным (а он в общем случае также состоит из ключей), требуется достаточно информативный сигнал диагностики для определения момента возникновения отказа, имеется ограничение по времени переключения на резерв. Для некоторых резервируемых элементов, такой блок переключения на резерв может просто отсутствовать.

На рис. 2 а представлена классическая структурная схема резервирования 2оо3 для ключевых элементов.

Рис. 2. Резервирование ключевых элементов по схеме 2оо3

 

Как видно из рис. 2 а при классическом резервировании 2оо3 требуется в 6 раз больше ключей, чем в схеме 1оо1. Этот недостаток можно частично устранить, применив упрощенную схему рис. 2 б. В схеме на рис. 2 б всего 4 ключа и один вентиль (В). Назначение вентиля (В) заключается в том, чтобы разрешать подачу команды на ОУ только по направлению, указанному стрелкой. Вентиль обеспечивает совместную работу ключей К1 и К3. В качестве вентилей широкое применение нашли полупроводниковые диоды, надежность которых как минимум на порядок выше надежности ключей, поэтому анализе надежности всего ключевого элемента их можно вообще н