Решение глобальных проблем, связанных с автомобилем

Реферат - Транспорт, логистика

Другие рефераты по предмету Транспорт, логистика

ной муфты для ИВ, работающего в условиях автомобильной трансмиссии, решена.

Интерес к ИВ определяется тем, что в них относительно просто получить широкий диапазон бесступенчатого регулирования: от выбранного максимума скорости выходного вала до нуля, то есть такого положения, когда ведущий вал вращается, а ведомый - неподвижен. Такая кинематика применительно к автомобилю позволяет придавать ему новые свойства: обойтись без муфты сцепления и осуществлять управление трансмиссией без размыкания кинематической цепи привода. Другие особенности и преимущества возможного применения ИВ в трансмиссии автомобиля рассмотрены нами далее.

В этой статье описана одна схема ИВ, а в настоящее время появились и другие их схемы, представляющие интерес, кроме того появилось устройство для придания трансмиссии с ИВ автоматизма.

Принцип работы ИВ заключается в том, что в нем имеется качающееся звенья, движение которых далее с помощью обгонных муфт преобразуется во вращение выходного вала вариатора. В случае использования ИВ с приводом от электродвигателя или с приводом от обычного ДВС на входе в ИВ мы имеем вращение вала, которое (в соответствии с принципом действия ИВ) преобразуют в качание некоторых промежуточных звеньев, о чем сказано выше. Однако ДВС обладает тем замечательным свойством, что в нем уже имеются качающиеся (возвратно - поступательно движущиеся) звенья - это поршни. Поэтому, если отказаться от вращения кривошипного вала, которое применено в обычном ДВС, а ограничиться только его качанием, то конструкция ИВ существенно упрощается: нет необходимости в превращении вращающегося вала в качание неких звеньев. В этом смысле ДВС органически предназначен работать с ИВ.

В ДВС была применена деаксиальная схема преобразования поступательного движения поршней в качательное движение колена выходного вала ДВС. В результате угол отклонения шатуна от вертикали стал существенно меньшим, чем в обычном ДВС. Результатом этого является уменьшение силы трения поршня о цилиндр. В рассмотренном в примере показано, что работа этих сил трения в пять раз меньше, чем в прототипе, в результате прогнозируется повышение механического КПД ДВС на 22%, только от этого уменьшается расход топлива на 16%, уменьшается тепловая напряженность деталей и увеличивается долговечность поршня и цилиндра..

На рис.2 представлена одна из возможных схем механизма преобразования возвратно-поступательного движения поршня в колебательное движение коромысло R1 относительно точки О1. Поршень в этой схеме движется по вертикали. Точка О лежит на линии движения поршня

 

Рис. 2

 

Расстояние ОО1 называется деаксиалом. Ход поршня равен 2R, размер коромысла R1 = 1,41R. В этой схеме коромысло О1 колеблется в пределах ? = 45. Именно в расчете этой схемы нами получены выше приведенные цифры уменьшения работы силы трения в паре поршень - цилиндр.

Приводим схемы эскизно-технического проекта трансмиссии автомобиля с ИВ применительно к четырехтактному четырех цилиндровому бензиновому двигателю с параметрам двигателя Заволжского моторного завода (Нижегородская обл.) ЗМЗ-4062.10 (принят за прототип). Эти схемы разработаны в двух вариантах:

вариант 1. Рядное расположение цилиндров (Рис 3);

Рис. 3. 1, 3, 5 я 14- зубчатые колеса; 2 - распределительный вал двигателя; 4 - кривошип двигателя; 6 и 10 - валы вариатора; 7 - выходной вал вариатора; 8 - маховик; 9 - коромысло маховика; 11 и 12 - обгонные муфты; 13 - коромысло шатуна; 15 - шатун двигателя, В- вариатор ИВА-2

 

Двух рядное расположение цилиндров (Рис. 4).

 

Рис.4. Поперечный разрез. Компоновка с импульсным вариатором ИВА-1

 

Рассмотрим устройство и работу силового агрегата с импульсным вариатором по рис. 3. Пусть цилиндры двигателя Р1, Р2, РЗ, Р4 пронумерованы в соответствии с порядком их работы. При этом будем считать, что валы 6 и 10 вариатора приводятся в качательное движение от штатных шатунов 15 и коромысел 13 ДВС. Но для привода маховика (в конструкцию двигателя введен кривошипно-коромысловый механизм, коромысло 9 которого приводится от вала 10. Передаточное отношение данного механизма выбрано таким, чтобы при качании коромысла 9 из одного крайнего положения в другое кривошип 4 поворачивался на 180.

Из рис. 3 видно, что вариатор В (здесь применен вариатор ИВА-2) встроен в конструкцию двигателя и составляет с ним единое целое. Управление клапанами газораспределения осуществляется от распределительного вала 2, который приводится во вращение либо от вала 10, либо от вала 6. На последних размещены обгонные муфты 11 и 12, которые, в зависимости от направления их вращения, приводят зубчатые колеса 1, 3, 5 и 14, связанные с валом 6, либо - с валом 10.

Работа двигателя сводится к следующему.

Допустим, что рабочий такт совершается в цилиндре Р1. Тогда в цилиндре Р2 будет такт сжатия, в цилиндре РЗ - такт всасывания, в цилиндре Р4 - такт выхлопа. Для того чтобы совершались эти такты, валы 6 и 10 должны вращаться в разные стороны и амплитуды их качания должны быть равны. Оба эти условия соблюдаются, поскольку в вариаторе предусмотрен механизм конического реверса.

В тот момент времени, когда заканчивается рабочий такт в цилиндре Р1, заканчивается такт сжатия в цилиндре Р2 и в нем начинается рабочий такт. Это значит, что вал 6 начнет вращаться по часовой стрелке, а вал 10 - против часовой стрелки, и в цилиндрах Р1 и РЗ будут происходить соответственно такты выхлопа и сжатия, а в цилиндре Р4 - такт всасывания. Далее рабочий такт совершается по