Разработка моделей, алгоритмов и расчетное обоснование выбора парашютной системы

Дипломная работа - Безопасность жизнедеятельности

Другие дипломы по предмету Безопасность жизнедеятельности



Введение

В настоящее время парашюты и парашютные системы широко применяются для различных целей: для спасения лётчиков при аварии самолета, спуск на землю людей, подопытных животных и исследовательской аппаратуры с самолётов, ракет и космических кораблей, для торможения самолета при посадке на взлётно-посадочную полосу ограниченного размера, десантирование различных грузов.

С парашютом можно спускать грузы весом и менее 1 кг и в несколько тонн; при этом парашюты можно вводить в действие на скоростях от 5 до 1000 м/сек. Такой широкий диапазон веса грузов и скоростей вызывает необходимость разрабатывать различные конструкции и способу введения в действие парашюты и парашютные системы. При этом должна быть обеспечена необходимая прочность парашютов, воспринимающих при раскрывании значительные нагрузки и подвергающихся в отдельных случаях воздействию высоких температур торможения. Возможность десантирования из самолётов разных грузов определяется в первую очередь разрешающей способностью самолёта. Если самолёт способен поднять и транспортировать груз, а также сбросить этот груз в полёте, то создание парашютной системы для десантирования такого груза не является большой проблемой. Обычно трудности возникают при необходимости обеспечить грузу малую скорость приземления, скорость груза в момент введения парашютной системы в действие, допустимых перегрузок торможения.

Объект исследования: парашютные системы для обеспечения заданных характеристик приводнения радиогидроакустического буя (РГБ), математические модели для описания поведения системы буй - парашют при внешних воздействиях, характерных для заданных режимов движения на воздушном участке траектории, при приводнении и проникании буя под поверхность воды.

Цель работы: разработка моделей, алгоритмов и расчетное обоснование выбора парашютной системы из условия обеспечения допустимых перегрузок при раскрытии парашюта после отделения от авиационного носителя и приводнении буя.

Схема действия такой системы представлена на (рис. 1).

Рис. 1. Схема действия парашютной системы

Действие парашютной системы (ПС) может быть разбито на следующие этапы:

1 этап - свободное падение буя с момента его отделения от носителя до введения парашюта в действие. В авиационных системах обычно используется принудительное введение парашюта в действие с помощью вытяжного звена, один конец которого закреплен на носителе, а другой прикреплен к уздечке парашюта буя, находящегося в специальной камере. На первом этапе скорость буя изменяется от скорости носителя Vнос до скорости V1 в момент введения парашюта в действие. Это изменение скорости происходит за счет сопротивления воздуха, действующего на буй, по законам свободного падения тела в воздухе. Продолжительность первого этапа при использовании авиационных буев обычно незначительна и не превышает 1 - 2 с. Иногда этот этап искусственно увеличивают для ускорения процесса постановки или iелью уменьшения скорости движения буя в момент введения парашютной системы в действие. Тогда введение парашюта в действие производится при помощи специального прибора, например, комбинированного авиационного прибора КАП-3.

2 этап - вытягивание из парашютной камеры купола и строп на всю длину. Начинается наполнение купола парашюта воздухом. Скорость системы в момент начала наполнения купола обозначим Vо. Продолжительность 2 этапа зависит от длины купола и строп, скорости буя к концу 1 этапа, высоты и др. Надо отметить, что изменение скорости буя происходит, в основном, за счет сопротивления самого буя (вес системы при этом уменьшается на величину веса парашюта).

3 этап - наполнение купола парашюта воздухом. Скорость снижения системы в процессе наполнения купола быстро изменяется, достигая к концу этапа значения VH - скорости в момент полного наполнения купола. При этом в системе действует максимальная нагрузка. Время наполнения купола воздухом зависит от Vо, конструкции и свойств купола парашюта, в том числе, воздухопроницаемости ткани и др. Процесс наполнения парашюта является резко неустановившемся и трудно поддающимся математическому описанию. В настоящей работе, где проводятся предварительные исследования, этот процесс описывался приближенно, а основной целью такого описания являлась оценка значений коэффициента перегрузок, испытываемых системой груз-парашют в момент наполнения парашюта.

4 этап - снижение буя с наполненным куполом. Скорость системы изменяется с VH до Vсн. Установившаяся скорость вертикального снижения из-за увеличения плотности воздуха постепенно уменьшается и перед приводнением достигает величины Vпр.

Выбор параметров парашютной системы определяется тактико-техническими требованиями, основные из которых приведены в таблице 1.

Таблица 1. Основные тактико-технические требования

№ п/пТактико-технические требованияЗначение параметра1Массогабаритные параметры буя -длина, мм800-диаметр, мм440-масса, кг302Авиационные носители-постановщикисамолеты типа ТУ-142 МЗ, ИЛ-38, вертолеты типа КА-27 ПЛ3Высота сбрасывания изделия, м: -минимальная400-максимальная8004Скорость носителя в момент сбрасывания, км/час 200-7505Угол приводнения, градне более от вертикали6Допустимая перегрузка при приводнении, единицы g1007Допустимое переуглубление, мне более 3

Из условия не превышения допустимых перегрузок определялась максимальная скорость изделия при приводнении. Зная потребное зна