Ароматические углеводороды
Информация - Химия
Другие материалы по предмету Химия
оскому s -скелету и параллельно друг другу (рис. а). Все шесть электронов взаимодействуют между собой, образуя p -связи, не локализованные в пары как при образовании двойных связей, а объединенные в единое p -электронное облако. Таким образом, в молекуле бензола осуществляется круговое сопряжение. Наибольшая p -электронная плотность в этой сопряженной системе располагается над и под плоскостью s -скелета (рис. б).
В результате все связи между атомами углерода в бензоле выровнены и имеют длину 0,139нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154нм) и длиной двойной связи в алкенах (0,133 им). Равноценность связей принято изображать кружком внутри цикла (рис. в). Энергия образования молекулы бензола, рассчитанная исходя из наличия трех простых связей С-С, трех двойных и шести связей С-Н, равна 5355кДж/моль. Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения - количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола.
Такое электронное строение объясняет все особенности бензола. Бензол трудно вступает в реакции присоединения, т.к. это привело бы к нарушению сопряжения. Такие реакции возможны только в очень жестких условиях.
В 1931 г. Хюккель на основании квантово-механических расчетов сформулировал правило, гласящее, что соединение должно проявлять ароматические свойства, если в его молекуле содержится плоское кольцо с (4n+2) обобщенными электронами, где n может принимать значения 1,1,2,3 и т.д. Согласно этому правилу, системы, содержащие 6,10,14 и т.д. обобщенных электронов, являются ароматическими. Примерами таких углеводородов могут служить бензол(n=1), нафталин (n=2) и антрацен (n=3).
Антрацен Нафталин
Под ароматичностью понимают способность некоторых предельных соединений легко вступать в реакции замещения, а не присоединения и устойчивость к действию окислителей, температуры и т.п. Это понятие сформировалось в результате изучения свойств соединений ряда бензола, в частности углеводородов состава CnH2n-6, которые, несмотря на формальную ненасыщенность, легко вступают в реакции замещения и устойчивы по отношению к окислителям.
.Номенклатура и изомерия
Условно арены можно разделить на два ряда. К первому относят производные бензола (толуол или дифенил), ко второму - конденсированные арены (простейший из них - нафталин):
Гомологический ряд бензола отвечает общей формуле С6Н2n-6.
Структурная изомерия в гомологическом ряду бензола обусловлена взаимным расположением заместителей в ядре. Монозамещенные производные бензола не имеют изомеров положения, так как все атомы в бензольном ядре равноценны. Дизамещенные производные существуют в виде трех изомеров, различающихся взаимным расположением заместителей.
Положение заместителей указывают цифрами или приставками: орто- (о-), мета- (м-), пара- (п-). Радикалы ароматических углеводородов называют арильными радикалами. Радикал С6Н5 - называется фенил.
.Физические свойства
Низшие члены гомологического ряда бензола представляют собой бесцветные жидкости с характерным запахом. Плотность и показатель преломления у них значительно выше, чем у алканов и алкенов. Температура плавления заметно выше, особенно у конденсированных многоядерных углеводородов (табл.). Из-за высокого содержания углерода все ароматические соединения горят сильно коптящим пламенем. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все ароматические углеводороды нерастворимы в воде и хорошо растворимы в большинстве органических растворителей: многие из них хорошо перегоняются с водяным паром.
Химические свойства
Бензол, несмотря на то, что по составу он является ненасыщенным соединением, проявляет склонность преимущественно к реакциям замещения, и бензольное ядро очень устойчиво. В этом заключаются свойства бензола, которые называют ароматическими свойствами. Последние характерны и для других ароматических соединений; однако различные заместители в бензольном ядре влияют на его устойчивость и реакционную способность; в свою очередь бензольное ядро оказывает влияние на реакционную способность соединенных с ним заместителей. Рассмотрим следующие группы реакций ароматических углеводородов: а) реакции замещения, б) реакции присоединения и в) действие окислителей.
Реакции замещения. При замещении в бензольном кольце возможны три типа реакций в зависимости от природы атакующей частицы.
Радикальное замещение SR.
R•+H:С6Н5>R- С6Н5+ H•
Если атакующий реагент R•-радикал, несущий неспаренный электрон, то водород, связанный с атомом углерода ядра, отщепляется с одним из электронов электронной пары ?-связи. Такой тип замещения называется радикальным. Реакция радикального замещения редко используется в ароматическом ряду.
Нуклеофильное замещение SN. При действии несущих отрицательный заряд нуклеофильных частиц на замещенный бензол С6Н5Х (где Х-заместитель) отщепляющаяся группа Х - уходит вместе с парой ? -электронов, ранее осуществляющих ее связь с ядром:
Z-+ X: С6Н5> Z- С6Н5+Х-
Примером может служить реакция натриевой соли бензолсульфокислоты со щелочью. Эта реакция лежит в основе промышленного метода получения фенола:
Для успешного протекания реак?/p>