Разработка и апробация угольно-пастовых электродов на основе моторных масел

Дипломная работа - Химия

Другие дипломы по предмету Химия



. Соответственно, уменьшается расход топлива, масла, улучшается приемистость двигателя.

Замена масла и введение присадки в него (вместе с заменой фильтра) должны проводиться через 5000 км для дизелей и турбин бензиновых двигателей и через 10 000 км - для бензиновых. Такие присадки, как правило, сухие концентрированные (в небольших флакончиках), но чаще это уже раствор порошка в моторном масле объемом 50-200 миллилитров.

Очень важно обращать внимание на совместимость масел: во флаконе и того, которое вы заливаете в картер двигателя. При несовместимости масло может свернуться и перекрыть масляные каналы, в результате чего в первую очередь полетят шатунные вкладыши. Итак, присадки из металлов и сплавов достаточно пластичны, длительного эффекта от них лучше не ждать. Хорошо уже то, что они вполне эффективны до очередной замены масла.

Присадки на основе керамики и алмазов

Так называемые керамические присадки содержат кремниевые соединения. Под воздействием трения и нагревания кремния в двигателе в местах трения образуется керамическое покрытие. Но для проявления такого эффекта необходимо огромное давление или же высокая температура.

Присадки на основе фторопласта имеет смысл применять только в новых или абсолютно исправных двигателях. Основная их задача - уменьшение трения. Восстановление изношенных деталей - не их специфика. Положительные свойства фторопластовых присадок в том, что они действуют почти сразу. Снижается расход масла, топлива, увеличивается приемистость, двигатель тише работает. Однако ощутимый эффект от применения этой присадки вы сможете ощущать совсем не долго. Слишком мягкий фторопласт и мелкие его частицы при работе двигателя становятся еще мельче и, наконец, размалываются и перестают работать [39].

Глава 2. Экспериментальная часть

Пристального внимания в исследовательских задачах в области электроаналитической химии заслуживают угольно-пастовые электроды (УПЭ) благодаря простоте и доступности методики их изготовления и возможности совмещения процессов концентрирования и определения как электроактивных, так и неэлектроактивных веществ, а также удобству и экспрессности обновления рабочей поверхности. При использовании УПЭ в качестве рабочего электрода анализируемый компонент из водного (органического) раствора концентрируется на электроде, а величина электрохимического отклика зависит не только от концентрации определяемого вещества в растворе, но и от специфичности его взаимодействия с пастой.

Основная идея использования УПЭ для анализа вязких материалов сводится к установлению влияния природы связующего на накопление, концентрирование и восстановление стандартных маркеров на поверхности УПЭ. В работе в качестве связующего компонента предложено использовать сам аналит - вязкую органическую жидкость - моторное масло.

Многомерный образ аналита формируется из вольтамперограмм маркеров, способных селективно взаимодействовать и накапливаться на поверхности угольно-пастового электрода в зависимости от природы связующего. При наличии набора маркеров различной природы обеспечивается условие перекрестной чувствительности, необходимое для функционирования мультисенсорной системы типа электронный язык, электронный нос.

Для идентификации исследуемых объектов использовали два хемометрических подхода:

)мультисенсорный подход - использование массива сенсоров (маркеры органической и неорганической природы);

)анализ многомерных данных - методы обработки многомерных данных (МГК, SIMCA-классификация).

.1 Приборы и реактивы

-анализатор инверсионный вольтамперометрический ИВА-5 с программным обеспечением;

-электрохимическая ячейка, соединенная по трехэлектродной схеме;

-рабочий электрод - угольно-пастовый электрод на основе спектрально чистого графита и моторного масла;

-электрод сравнения - хлоридсеребряный электрод Radelkis OP 0820 P (Венгрия);

-вспомогательный электрод - стеклоуглеродный электрод;

-для приготовления растворов использовалась дистиллированная вода;

-10-2 М раствор хлороводородной кислоты готовился разбавлением 10-1 М раствора, приготовленного из фиксанала;

-навески CuSO4, Pb(NO3)2, о-нитроанилин, п-нитроанилин, 2,4-динитрофенол, о-нитробензойная кислота; марок ч и хч;

-углеродный материал для электрода с диаметром частиц 0.075 мм готовился измельчением спектрально чистого графита при помощи лабораторного гомогенизатора MPW-309 (Польша) с последующим просеиванием его через сита;

-весы аналитические ВПР-200;

-химическая посуда, в том числе и мерная.

2.2 Методика эксперимента

Для приготовления растворов маркеров (неорганические - 10-3, органические маркеры - 10-4 моль/л), брали навеску, количественно переносили их в мерную колбу и доводили до метки раствором (10-2 моль/л) фонового электролита.

Пастовый электрод (рис. 2.1) готовили смешением графитового порошка и моторного масла в соотношении 6 к 1 (по массе) при помощи лабораторного гомогенизатора MPW-309 (время гомогенизации 7-10 мин). Подготовленная паста переносилась в полость стеклянной трубки (диаметр 2.0 мм). Контактом служила серебряная проволока. Поверхность электрода выравнивалась на гладкой бумаге (кальке). После каждого измерения поверхность электрода обновляли удалением 1-2 мм пасты с последующей подготовкой поверхностного слоя.

Условия приготовления пасты жестко стандартизированы, так как регистрируемый аналити