Проектування дільниці по відновленню кулачків розподільчого валу автомобіля ЗІЛ–130
Курсовой проект - Транспорт, логистика
Другие курсовые по предмету Транспорт, логистика
прояв таких повторюваних ударів - характерний шум, що виникатиме з-під клапанної кришки. Ділянка переходу сектора відпочинку в сектор прискорення - другий після вершини з найбільш уразливих на кулачку.При збільшеному тепловому зазорі перші мікроразрушенія на кулачку можуть зявитися в цьому місці, а потім процес прогресує.
Гідрокомпенсатори теплових зазорів, що представляють собою, по суті, два поршенька, розсовуємо тиском масла, вирішують цю проблему, але тільки до тих пір, поки самі залишаються справними. А підклинює гидротолкателі можуть при засміченні системи змащення й наявності в олії сторонніх включень. При заклинюванні гідроштовхачем найбільше дістається вершині кулачки.
1.2 Матеріал деталі
Кулачки розподільчого валу виготовляють із чугуна твердістю 55-62 HRC, шороховатість 8-го класу.
Чавун - сплав заліза з вуглецем (змістом звичайно більш 2,14%), що характеризується евтектічесім перетворенням. Вуглець у чавуні може міститися у вигляді цементиту і графіту. Залежно від форми графіту та кількості цементиту, виділяють: білий, сірий, ковкий і високоміцні чавуни.Чавуни містять постійні домішки (Si, Mn, S, P), а в деяких випадках також легуючі елементи (Cr, Ni, V, Al та ін). Як правило, чавун крихкий.
1.3 Принцип процесу надзвукового плазмового напилення
Зупинимося на деяких характерних рисах плазмового напилювання з використанням надзвукових струменів, оскільки цей метод є найбільш передовим і має ряд істотних переваг. Додавання метану або пропан-бутану до повітря, використання газоповітряної суміші в якості плазмо утворюючого газу, робить високотемпературний ділянку плазмового струменя, в якому відбувається нагрівання й прискорення частинок порошку, більш протяжним, а профіль температур і швидкостей більше заповненим. Це відіграє вирішальну роль у поліпшенні якості покриттів і підвищення продуктивності процесу напилювання. Характер траєкторії часток порошку при бічному вдув в зносячи плазмову струмінь залежить від градієнта швидкості в ній. Висока швидкісна і температурна нерівномірність по перерізу порошкового потоку у плазмовій струмені при подачі під зріз сопла плазматрона обумовлена властивостями плазмового струменя. Траєкторія польоту частинок визначається безліччю факторів. Профіль швидкостей і температур для плазми продуктів згорання характеризується меншою неоднорідністю, тому порошковий потік глибше проникає в струмінь, відбувається більш рівномірний нагрів всіх частинок, незалежно від траєкторії їх польоту. У плазмі продуктів згоряння (незалежно від траєкторії польоту, розмірів і форми частинок) аеродинамічний і теплове вплив на неї більш рівномірно.
Висока тепловіддача до часток порошку і кращі розгінні властивості плазми продуктів згорання в порівнянні з повітряного або азотної вимагають коректування часу перебування частинок порошку в високотемпературної зоні, оптимальний нагрів забезпечується при більш високих швидкостях. Для цього необхідно збільшувати витрату газу або зменшувати діаметр сопла. Підвищена швидкість частинок і рівномірний їх прогрів по всьому перетину забезпечують підвищення щільності і міцності зчеплення покриття з основою.
Профіль швидкостей і температур частинок у поперечному перерізі плями напилювання в момент контакту з основою характеризується меншою неоднорідністю в порівнянні з напилюванням в інертних газах. Тому при відносному переміщенні плазматрона і деталі на поверхню останньої завжди потрапляють частинки з високим енергетичним рівнем. Завдяки цьому периферійні частинки, що беруть участь у формуванні покриття, не так погіршують якість, що сприяє більш сприятливому розподілу міцності зчеплення та пористості покриття по плямі напилювання.
У плазмі продуктів згорання периферійні частинки досягають основи з більш високим енергетичним рівнем. Це особливо важливо при формуванні першого осадження моношару покриття, відповідального за адгезійну міцність зчеплення. Поліпшуються також інтегральні показники якості покриттів.
Вивчено вплив різних факторів (витрат порошку; умов напилювання; зносу електродів) при надзвуковому газоповітряної плазмовому напилюванні порошків із суттєво різними теплофізичними властивостями: алюмінієвого сплаву і оксиду алюмінію - на якість покриттів.
Переваги технології напилювання:
1. Можливість нанесення покриттів на вироби, виготовлені практично з будь-якого матеріалу.
2. Можливість напилювання різних матеріалів за допомогою одного і того ж обладнання.
3. Відсутність обмежень щодо розміру оброблюваних виробів. Покриття можна напилити як на велику площу, так і на обмежені ділянки великих виробів.
4. Можливість застосування для збільшення розмірів деталі (відновлення та ремонт зношених деталей машин).
5.Відносна простота конструкції обладнання для напилювання, його мала маса, нескладність експлуатації обладнання для напилювання, можливість швидко і легко переміщатися.
6. Можливість широкого вибору матеріалів для напилювання.
7. Невелика деформація виробів під впливом напилювання. Багато способи поверхневої обробки виробу вимагають нагрівання до високої температури всього виробу або значної його частини, що часто стає причиною його деформації.
8. Можливість використання напилювання для виготовлення деталей машин різної форми.
9.Простота технологічних операцій напилювання, відносно невелика трудомісткість, висока продуктивність нанесення покри