Применение тригонометрической подстановки для решения алгебраических задач
Дипломная работа - Математика и статистика
е для учащихся / Е. А. Морозова. М.: Просвещение, 1976. С. 288.
Московский государственный университет // Математика в школе. №10. 2002. С. 28-43.
Нараленков М. И. Вступительный экзамен по математике. Алгебра: как решать задачи: Учебно-практическое пособие / М. И. Нараленков. М.: Изд-во Экзамен, 2003. С. 448.
Олехник С. Н. Нестандартные методы решения уравнений и неравенств: Справочник / С. Н. Олехник, М. К. Потапов, П. И. Пасиченко. М.: Изд-во МГУ, 1991. С. 143.
Петров В. В. Нестандартные задачи / В. В. Петров, Е. В. Елисеева// Математика в школе. №8. 2001. С. 56-59.
Писаревский Б. М. Задачи об экстремумах / Б. М. Писаревский // Математика в школе. №5. 2004. С. 47-51.
Письменный Д. Т. Математика для старшеклассников / Д.Т.Письменный. М.: Айрис, Рольф, 1996. С. 281.
Пойа Д. Обучение через задачи / Д. Пойа // Математика в школе. №3. 1970. С. 89-91.
Потапов М. К. Готовимся к экзаменам по математике: Учебное пособие для поступающих в вузы и старшеклассников / М. К. Потапов, С.Н.Олехник, Ю. В. Нестеренко. М.: Научно технический центр Университетский: АСТ Пресс, 1997. С. 352.
Потапов М. К. Конкурсные задачи по математике / М.К.Потапов, С. Н. Олехник, Ю.В. Нестеренко. М.: ФИЗМАТЛИТ, 2001. С.400.
Потапов М. К. Математика. Методы решения задач. Для поступающих в вузы: Учебное пособие / М. К. Потапов, С. Н. Олехник, Ю.В.Нестеренко. М.: Дрофа, 1995. С. 336.
Потапов, М. К. Рассуждения с числовыми значениями при решении систем уравнений / М. К. Потапов, А. В. Шевкин // Математика в школе. №3. 2005. С. 24-29.
Программы для общеобразоват. Школ, гимназиев, лицеев: Математика. 5-11 класс / Сост. Г. М. Кузнецова, Н. Г. Миндюк. М.: Дрофа,2002. С. 320.
Саакян С. М. Задачи по алгебре и началам анализа для 10-11 классов / С. М. Саакян, Гольдман А. М., Денисов Д. В. М.: Просвещение, 1990. С. 256.
Смоляков А. Н. Тригонометрические подстановки в уравнения и неравенства / А. Н. Смоляков // Математика в школе. №1. 1996. С.4.
Супрун В. П. Избранные задачи повышенной сложности по математике / В. П. Супрун. Минск: Полымя, 1998. С. 108.
Терешин Н. А. 2000 задач по алгебре и началам анализа. 10 класс/ Н. А. Терешин, Т. Н. Терешина. М.: Аквариум, 1998. С. 256.
Ткачук В. В. Математика абитуриенту: Все о вступительных экзаменах в вузы. Том 1 / В.В.Ткачук. М.: ТЕИС, 1996. С. 415.
Ткачук В. В. Математика абитуриенту: Все о вступительных экзаменах в вузы. Том 2 / В.В.Ткачук. М.: ТЕИС, 1996. С. 414.
Фарков А. В. Математические олимпиады в школе. 5-11 класс / А. В. Фарков. М.: Айрис-пресс, 2002. С. 160.
Фирстова Н. И. Метод замены переменной при решении алгебраических уравнений / Н. И. Фирстова // Математика в школе. №5. 2002. С. 68-71.
Фридман Л. И. Как научиться решать задачи / Л. И. Фридман, Е.Н. Турецкий. М.: Московский психолого-социальный институт, 1999. С. 240.
Черкасов О. Ю. Математика: Методические указания для поступающих в вузы / О. Ю. Черкасов, А. Г. Якушев. М.: УНЦ ДО МГУ, 1996. С. 368.
Черкасов О. Ю. Математика: Скорая помощь абитуриентам / О.Ю. Черкасов, А. Г. Якушев. М.: Учебный центр Московский лицей, 1995. С. 348.
Шабунин М. И. Математика для поступающих в вузы. Неравенства и системы неравенств / М. И. Шабунин. М.: Аквариум, 1997. С. 256.
Шабунин М. И. Математика для поступающих в вузы. Уравнения и системы уравнений / М. И. Шабунин. М.: Аквариум, 1997. С. 272.
Шарыгин И. Ф. Математика для поступающих в вузы: Учебное пособие / И. Ф. Шарыгин. М.: Дрофа, 2000. С. 416.
Шарыгин И. Ф. Математика для школьников старших классов / И. Ф. Шарыгин. М.: Дрофа, 1995. С. 486.
Шарыгин И. Ф. Решение задач: Учебное пособие для 10 класса общеобразовательных учреждений / И. Ф. Шарыгин. М.: Просвещение, 1994. С. 350.
Приложение
Занятие №1
Тема: применение тригонометрической подстановки для решения иррациональных уравнений.
Цели:
- Вспомнить теоретические основы введения тригонометрической подстановки.
- Рассмотреть применение тригонометрической подстановки для решения иррациональных уравнений в случае, когда множество значений переменной
ограничено.
- Провести сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее.
Содержание:
- Решить уравнение
.
- Решите уравнение
.
- Решить уравнение
.
- Решить уравнение
.
Домашнее задание:
- Решить уравнение
.
- Решить уравнение
.
- Решить уравнение
.
Литература: [3], [4], [12], [14], [23] [25], [31], [32], [37] [39], [43], [44], [47] [51], [57].
Занятие №3
Тема: применение тригонометрической подстановки для решения систем уравнений.
Цели:
- Рассмотреть применение тригонометрической подстановки для решения сложных, олимпиадных систем.
- Провести сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее, где это возможно.
- Привести пример системы, решить которую без тригонометрической подстановки не возможно.
Содержание:
- Решить систему уравнений
.
- Решить систему
.
- Выяснить, сколько решений имеет система уравнений
.
- При каких значениях параметра система имеет решение
.
Домашнее задание:
- Решить систему
.
- Решить систему
.
- Сколько решений имеет система уравнений
.
Литература: [3], [6] [8], [10], [12], [14], [18], [24], [30], [43].
Занятие №4
Тема: применение тригонометрической подстановки для решения задач на отыскание наибольшего и наименьшего значений функции.
Цели:
- Вспомнить основные методы решения задач на отыскание наибольшего и наименьшего значений функции.
- Показать, как метод тригонометрической подстановки применяется для решения задач на нах?/p>