Применение тригонометрической подстановки для решения алгебраических задач
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
?и алгебраических задач на факультативных занятиях по математике в старших классах с углубленным изучением математики.
Опытная работа показала, что введение факультативного курса Применение тригонометрической подстановки для решения алгебраических задач в классы с углубленным изучением математики оправдано. В состав диагностирующей контрольной работы, которая была проведена на завершающем занятии факультативного курса, были включены задачи, которые допускали как алгебраический способ решения, так и решение с помощью тригонометрической подстановки. Школьникам была предоставлена свобода выбора метода решения каждого задания. Результаты работы показали, что учащиеся без особого труда выделяют задачи, в которых возможно ввести тригонометрическую подстановку; применяют ее для решения трудных и очень трудных конкурсных задач; осуществляют сравнение и выбор наиболее рационального способа решения. А значит, гипотеза, сделанная в начале дипломной работы, подтвердилась. Введение материала, связанного с тригонометрической подстановкой, на факультативных занятиях в классах с углубленным изучением математики способствует развитию творческих способностей учащихся и подготавливает их к вступительным экзаменам в вузы с повышенными требованиями к математике. Единственное, над чем еще можно поработать грамотное обоснование введенной замены.
Литература
- Алгебра и математический анализ. 10 класс: Учебное пособие для школ и классов с углубленным изучением математики / Н. Я. Виленкин, О.С. Ивашев-Мусатов, С. И. Шварцбурд. М.: Мнемозина, 2001. С. 335.
- Алгебра и математический анализ. 11 класс: Учебное пособие для школ и классов с углубленным изучением математики / Н. Я. Виленкин, О.С. Ивашев-Мусатов, С. И. Шварцбурд. М.: Мнемозина, 2001. С. 288.
- Алексеев А. Тригонометрические подстановки / А. Алексеев, Л. Курляндчик // Квант. №2. 1995. С. 4042.
- Балаян Э. Н. Репетитор по математике для поступающих в вузы / Э.Н.Балаян. РостовнаДону: Изд-во Феникс, 2003. С. 736.
- Болтянский В. Г. Лекции и задачи по элементарной математике / В.Г.Болтянский, Ю. В. Сидоров, М. И. Шабунин. М.: Изд-во Наука, 1972. С. 592.
- Вавилов В. В. Задачи по математике. Алгебра / В. В. Вавилов, И.И.Мельников, С. Н. Олехник, П. И. Пасиченко. М.: Наука, 1988. С.439.
- Василевский А. Б. Методы решения задач / А. Б. Василевский. Минск: Вышэйшая школа, 1974. С. 240.
- Василевский А. Б. Обучение решению задач: Учебное пособие для педагогических институтов / А. Б. Василевский. Минск: Вышэйшая школа, 1988. С. 255.
- Вороной А. Н. Пять способов доказательства одного неравенства / А.Н. Вороной // Математика в школе. №4. 2000. С. 12.
- Вороной А. Н. Циклические системы уравнений / А. Н. Вороной// Математика в школе. №7. 2003. С. 71-77.
- Всероссийские математические олимпиады школьников: Книга для учащихся / Г. Н. Яковлев, Л. П. Купцов, С. В. Резниченко, П. Б. Гусятников. М.: Просвещение, 1992. С. 383.
- Горнштейн П. И. Экзамен по математике и его подводные рифы / П. И. Горнштейн, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. М.: Илекса, 2004. С. 236.
- Горнштейн П. И. Задачи с параметрами / П.И.Горнштейн, В.Б.Полонский, М. С. Якир. М.: Илекса, Харьков: Гимназия, 2002. С.336.
- Горнштейн П. И. Тригонометрия помогает алгебре / П.И.Горнштейн. М.: Бюро Квантум, 1995. С. 100-103. Приложение к ж. Квант, №3/95.
- Громов А. И. Математика для поступающих в вузы. Методы решения задач по элементарной математике и началам анализа / А.И.Громов, В. М. Савчин. М.: Изд-во РУДН Народная Компания Евразийский регион, 1997. С. 264.
- Дорофеев Г. В. Пособие по математике для поступающих в вузы. Избранные вопросы элементарной математики / Г. В. Дорофеев, М. К. Потапов, Н. Х. Розов. М.: Просвещение, 1976. С. 640.
- Епифанова Т. Н. Отыскание экстремальных значений функций различными способами / Т. Н. Епифанова // Математика в школе. №4. 2000. С. 52-55.
- Зарубежные математические олимпиады / С. В. Конягин, Г.А.Тоноян, И. Ф. Шарыгин. М.: Наука, 1987. С. 416.
- Канин Е. С. Учебные математические задачи: Учебное пособие / Е. С. Канин. Киров: Изд-во ВятскогоГГУ, 2003. С. 191.
- Колягин Ю. М. Задачи в обучении математике / Ю. М. Колягин. М.: Просвещение, 1977. С. 143.
- Лапушкина Л. И. Системы алгебраических уравнений / Л.И. Лапушкина, М. И. Шабунин // Математика в школе. №6. 1998. С. 22-26.
- Махров В. Г. Новый репетитор по математике для старшеклассников и абитуриентов / В. Г. Махров, В. Н. Махрова. РостовнаДону: Изд-во Феникс, 2004. С. 544.
- Мельников И. И. Как решать задачи по математике на вступительных экзаменах / И. И. Мельников, И. Н. Сергеев. М.: Изд-во Московского университета, 1990. С. 303.
- Мерзляк А. Г. Тригонометрия: Задачник по школьному курсу. 8-11 класс / А. Г. Мерзляк, В. Б. Полонский, Е. М. Рабинович. М.: АСТ ПРЕСС: Магистр, 1998. С. 655.
- Мерзляк А. Г. Неожиданный шаг или сто тринадцать красивых задач / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. Киев: Агрофирма Александрия, 1993. С. 59.
- Методика преподавания математики в средней школе: Общая методика. Учебное пособие для студентов пед. ин-тов по спец. 2104 Математика и 2105 Физика / Сост. Р. С. Черкасов, А. А. Столяр. М.: Просвещение, 1985. С. 336.
- Методика преподавания математики в средней школе: Частная методика: Учебное пособие для студентов пед. ин-тов по физ.-мат. Спец. / Сост. В.И.Мишин. М.: Просвещение, 1987. С. 414.
- Мордкович А. Г. Беседы с учителями математики / А.Г.Мордкович. М.: Школа Пресс, 1995. С. 272.
- Морозова Е. А. Международные математические олимпиады. Задачи, итоги, решения. Пособи