Анализ эффективности применения ГРП на "Майском" месторождении

Курсовой проект - Геодезия и Геология

Другие курсовые по предмету Геодезия и Геология

ственно, возникает значительный перепад давлений между различными участками пласта, скорость движения флюида вблизи забоя скважины сильно возрастает и существует проблема разрушения породы пласта и засорение мехпримесями призабойной зоны скважины.

Решение проблемы снижения проницаемости призабойной зоны скважины, возникшего в результате воздействия физических или химических факторов (солеотложения, засорение пор призабойной зоны пласта мехпримесями из раствора глушения, проникновение бурового раствора в пласт, образование АСПО и т.д.).

улучшение сообщаемости ствола скважины с призабойной зоной,

миниминизация напряжений в пласте.

Рисунок 4 - образование трещины

 

При производстве ГРП должны быть решены следующие задачи:

Создание трещины гидроразрыва путем закачки специально подобранной жидкости ГРП.

Удержание трещины в раскрытом состоянии путем добавления в жидкость гидроразрыва проппанта с зернами определенного размера и определенной прочности.

Удаление жидкости гидроразрыва для восстановления высоких фильтрационных характеристик призабойной зоны скважины.

Повышение продуктивности пласта.

На месторождениях ОАО Томскнефть для увеличения производительности скважин применяется метод создания в высокопроницаемых пропластках коротких и широких трещин проникающих за пределы зоны загрязнения, который называется технологией концевого экранирования (TSO).

Технология концевого экранирования является модификацией операции гидроразрыва, при которой создаются короткие трещины (несколько десятков метров) шириной до 30 мм. Это достигается путем контролируемого распространения трещины до запланированной длины и последующего ее закрепления проппантом, закачиваемым с рабочей жидкостью. Благодаря фильтрационным утечкам рабочей жидкости через поверхности трещины, концентрация проппанта возрастает на фронте закачки, что приводит к образованию проппантных пробок вблизи конца трещины, которые препятствуют ее дальнейшему распространению. Закачка пропанта, продолжаемая после остановки трещины, позволяет повысить давление внутри трещины, увеличивая тем самым ее раскрытие. При такой технологии ГРП уменьшаются затраты на проведение работ за счет уменьшения объемов закачиваемой жидкости и пропанта и сокращения времени проведения операций.

Эффект образования перемычек и повышенной упаковки пропанта в конце трещины считался одним из серьезных осложнений при проведении ГРП, сопровождающимся преждевременным выпадением пропанта и остановкой распространения трещин, но закачка могла быть продолжена и после этого еще некоторое время. Инженерное решение состояло в использовании данного эффекта для решения задач управления распространением трещин и оптимизации их раскрытия. Процесс образования перемычек и повышенной упаковки пропанта в конце трещины можно успешно использовать для создания коротких и широких трещин в высокопроницаемых пластах-коллекторах. Увеличение раскрытия закрепленной трещины ведет к увеличению ее проводимости. Значение безразмерного параметра гидравлической проводимости С позволяет оценить продуктивность скважины после ГРП методом подстановки в формулу Дюпюи эффективного радиуса скважины вместо фактического. Эффективный радиус скважины пропорционален длине трещины, умноженной на функцию гидравлической проводимости трещины С.

 

С = (W * k prop) I (х * к form),

где W - раскрытие трещины, к ргор- проницаемость пропантной набивки, х - полудлина трещины, к form - проницаемость пласта .

Для месторождений Западной Сибири безразмерная проводимость трещины С находится в пределах от 0,5 до 1,5.

Особенности технологии TSO

 

Рисунок.5 Эффективный радиус скважины

 

.2 Проводимость скважины

 

Образование трещин гидроразрыва и направление их развития

По мере заполнения скважины жидкостью и создания на поверхности давления, давление жидкости в порах породы возрастает и действует равномерно во всех направлениях . При повышении давления жидкости до момента , когда разрывающая сила жидкости , действующая на породу , превысит силы сцепления этой породы, скала расколется и произойдет разрыв. Трещины могут быть горизонтальными, вертикальными и наклонными. Пространственная ориентация трещины определяется напряженным состоянием горных пород в зоне скважины и изменениями обусловленными распределением напряжений. Напряжения формируются главным образом под действием гравитационных сил.

Принято считать, что на глубине свыше 300 м вертикальное напряжение гораздо выше двух других составляющих. Поэтому трещина всегда должна быть вертикальной, в силу того, что образование трещины происходит в направлении перпендикулярном наименьшей из нагрузок.

 

Рисунок 6. Возникновение вертикальной и горизонтальной трещины

 

На самом деле реальная картина несколько сложней. В зависимости от местных особенностей и строения пластов ( микротрещины, наличие псевдопластических характеристик пород, разгрузка продуктивного пласта в зоне скважины и т..д..) при ГРП могут возникать как горизонтальные так и вертикальные трещины. В случае образования вертикальных трещин азимут трещины определяется амплитудой двух минимальных горизонтальных напряжений. Ограничение трещины по высоте и ее геометрия тесно связаны со свойствами породы пласта, напряженным состоянием породы, изломостойкостью породы и плотностными свойс