Анализ эффективности применения ГРП на "Майском" месторождении
Курсовой проект - Геодезия и Геология
Другие курсовые по предмету Геодезия и Геология
серые, массивные, плотные, полимиктовые, крупно- и мелко-среднезернистые, плохо отсортированные. Алевролиты светло-коричневые, плотные, массивные с горизонтальной слоистостью. Аргиллиты серые и темно-серые, алевритистые, часто углистые.
Мощность тюменской свиты составляет 107-298 м.
.4 Наунакская свита Y1 nuk
Наунакская (васюганская) свита (келловейский и оксфордский ярусы верхней юры) согласно залегает на породах тюменской свиты. Исследуемый район находится в зоне перехода васюганской свиты в наунакскую. Вскрытые скважинами разрезы свидетельствуют о полифациальности условий осадконакопления - от прибрежно-морских (в незначительном объеме), до прибрежно-континентальных и континентальных.
Песчаники серые и темно - серые, крепкосцементированные, мелко- и среднезернистые, с включениями зерен пирита, намывами углистого материала и раковин. Алевролиты желтовато-серые, глинистые, с горизонтальной и линзовидной слоистостью.
Аргиллиты буровато-серые, темно-серые, углистые.
.5 Тектоника
Двойное месторождение нефти в современном тектоническом плане расположено в пределах крупного структурного носа, осложняющего крайнюю северо-западную периклиналь Парабельского мегавала.
По основному отражающему горизонту Па (подошва баженовской свиты) Снежное поднятие оконтурено изогипсой -2360 м и представляет собой узкую антиклинальную (скорее валообразную) складку небольших размеров (18x4 км) северо-восточного простирания. За счет имеющего место в центральной части структуры пережима северо-восточная, и юго-западная части структуры осложнены небольшими вершинами с амплитудами 40 и 25 метров соответственно. В южной части структуры через небольшой пережим примыкает отдельное малоамплитудное (30 м) поднятие размером 3x2 км.
Рисунок 1 Тектоническая карта района работ
УСЛОВНЫЕ ОБОЗНАЧЕНИЯ
газонефтяные (нефтегазовые) месторождения
основные структуры Ш порядка
контуры положительных структур II порядка
контуры положительных структур I порядка
контуры отрицательных структур I порядка
промежуточные структуры
.6 Нефтегазоводоностность
Установлено, что пласты в верхней части юрских отложений Двойного нефтяного месторождения нефтегазонасыщены и их незначительные притоки объясняются плохими коллекторскими свойствами пород, слагающих их. Пределы коллектора следующие: коэффициент пористости равен 0,101; проницаемость - 0,56 мД.
В целом по залежи пласта Ю12 по промыслово-геофизическим данным коллектора характеризуются следующими средними значениями параметров: пористость - 13,9%, нефтенасыщенность - 60,6%, проницаемость - 2,4мД.
Пласты Ю11 и Ю12 содержат признаки нефтенасыщения в керне и сложены мелкозернистыми, крепко сцементированными песчаниками.
Из интервала 2395-2404 получен приток газа дебитом 35,7 м/сутки на 5 мм. штуцере. При испытании пласта Ю12 в колонне из интервала 2419-2433 м. получен приток нефти дебитом 0,24 м3/сутки на штуцере 1 мм.
Таким образом, подтверждается наличие газовой и нефтяной залежей в пластах Ю11 и Ю12 .
Из коллекторов с низкими фильтрационно-емкостными характеристиками после проведения гидроразрыва пласта реально получение промышленных притоков нефти. Из интервалов перфорации: 2395,4-2403,6; 2419,1-2433,6; 2438,2-2440,3; 2443,6-2445,1; 2446,4- 2448,3 получен приток безводной нефти в объеме 28,4 м3/сутки на штуцере 8мм.
За счет работы газовой залежи пласта Ю11 газовый фактор составил 264м3/м3. До гидроразрыва дебит скважины составлял 0,24 м3/сутки на штуцере 1 мм.
При совместном испытании пластов Ю12 и Ю12 после проведенного гидроразрыва из интервалов 2409,1-2412,2; 2423,4-2432,0 получен приток нефти с дебитом 32 м3/сутки на штуцере 8 мм.
3. Технико-технологический раздел
.1 Гидравлический разрыв пласта
Сущность гидравлического разрыва пласта (ГРП) в том, что посредством закачки жидкости при высоком давлении происходит раскрытие естественных или образование искусственных трещин в продуктивном пласте и при дальнейшей закачке песчано-жидкостной смеси или кислотного раствора расклинивание образованных трещин с сохранением их высокой пропускной способности после окончания процесса и снятия избыточного давления. ГРП является одним из наиболее сложных видов работ в нефтегазовой отрасли. Эта технология была впервые использована в США в конце 40-х годов для приобщения к разработке пластов с нарушенной проницаемостью возле ствола скважины и увеличения продуктивности скважин в низкопроницаемых коллекторах. В СССР промышленное внедрение гидроразрыва пласта начато в 1954 г.
В настоящее время ГРП широко применяется во всем мире как в низкопроницаемых, так и в высокопроницаемых пластах-коллекторах.
Рисунок 3 Изменение расхода и давления при образовании искусственных трещин
Рисунок 2 Изменение расхода и давления при раскрытии естественных трещин
Цели ГРП для пластов с низкой проницаемостью следующие :
увеличить добычу или приемистость созданием каналов с высокой продуктивностью, улучшить движение флюидов между скважиной и пластом.
Цели ГРП для пластов с высокой проницаемостью следующие: изменение радиального характера притока жидкости из пласта к забою скважины на линейный или билинейный.
В случае радиального движения жидкости к забою скважины происходит дестабилизация пласта. Объясняется это явление тем, что скорости фильтрации вблизи забоев скважин выше, чем в пласте. Соответ