Перспективы развития микропроцессоров

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



?дительности (Приложение В, график 1).

Заключение

Необходимо отметить, что, ученые и инженеры успешно преодолевают барьеры на пути повышения производительности элементов и сиcтем. Они предлагают различные пути решения встающих перед компьютерной отраслью проблем. Это и улучшение полупроводниковых техпроцессов, и совершенствование архитектуры высокочастотных микросхем, и внедрение перспективных технологий, и даже поиск путей модификации конструкций системных блоков.

За iёт того, что современные процессоры очень быстры, переключение между задачами обычно остаётся незаметным на взгляд пользователя. Однако существуют и приложения, прервать которые для передачи процессорного времени другим задачам в очереди достаточно сложно. В этом случае операционная система начинает подтормаживать, что нередко вызывает раздражение у человека, сидящего за компьютером. Также, нередко можно наблюдать и ситуацию, когда приложение, забрав ресурсы процессора, зависает, и такое приложение бывает очень тяжело снять с выполнения, поскольку оно не отдаёт процессорные ресурсы даже планировщику операционной системы.

Подобные проблемы возникают в системах, оснащённых многоядерными процессорами, на порядок реже. Дело в том, процессоры с несколькими ядрами способны выполнять одновременно несколько вычислительных потоков, соответственно, для функционирования планировщика появляется больше свободных ресурсов, которые можно разделять между работающими приложениями. Фактически, для того, чтобы работа в системе с многоядерным процессором стала некомфортной, необходимо одновременное пересечение процессов, пытающихся захватить в безраздельное пользование все ресурсы CPU.

Исходя из проделанной работы можно сделать следующие выводы:

ученые и инженеры успешно преодолевают барьеры на пути повышения производительности элементов и сиcтем;

достигнутая степень интеграции позволяет строить параллельные системы, в которых число процессоров может достигать десятков тысяч;

ввиду того, что технология виртуальной многопоточности, Hyper-Threading присутствует в процессорах Intel уже очень продолжительно время, разработчики программного обеспечения к настоящему времени предлагают достаточно большое число программ, способных получить выигрыш от многоядерной архитектуры CPU;

основная цель будущей нанотехнологии, по всей вероятности, - создание структур, способных к эволюции и саморазвитию;

идея объединения нескольких ядер в одном процессоре продемонстрировала свою состоятельность на практике;

среди приложений, скорость работы которых на многоядерных процессорах будет увеличена, следует отметить утилиты для кодирования видео и аудио, системы 3D моделирования и рендеринга, программы для редактирования фото и видео, а также профессиональные графические приложения класса САПР;

существует большое количество программного обеспечения, которое многопоточность не использует или использует её крайне ограниченно. Среди ярких представителей таких программ - офисные приложения, веб-браузеры, почтовые клиенты, медиа-проигрыватели, а также игры. Однако даже при работе в таких приложениях многоядерная архитектура CPU способна оказать положительное влияние. Например, в тех случаях, когда несколько приложений выполняются одновременно.

Будущее за нанотехнологиями, оперирующими величинами порядка нанометра. Это технологии манипуляции отдельными атомами и молекулами, в результате которых создаются структуры сложных спецификаций. Поэтому переход от "микро" к "нано" - это уже не количественный, а качественный переход: скачок от манипуляции веществом к манипуляции отдельными атомами. Мир таких бесконечно малых величин намного меньше, чем мир сегодняшних микрокристаллов и микротранзисторов.

Наиболее значимые практические результаты достигнуты в области молекулярной электроники. Она логически близка к традиционной полупроводниковой электронике. Методами молекулярной электроники из углеводородных соединений удается получить аналоги диодов и транзисторов, а следовательно, и основные булевы модули И, ИЛИ и НЕ, из которых затем можно строить схемы любой сложности. Подобный подход позволяет сохранить преемственность архитектурных решений.

Глоссарий

№ п/пНовые понятияСодержание1ДиэлектрикМатериал, плохо проводящий или совсем не проводящий электрический ток. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле.2TDPВеличина, показывающая, на отвод какой тепловой мощности должна быть расiитана система охлаждения процессора или другого полупроводникового прибора.3Квантовый компьютерВычислительное устройство, работающее на основе квантовой механики. Квантовый компьютер принципиально отличается от классических компьютеров, работающих на основе классической механики. Полномасштабный квантовый компьютер является пока гипотетическим устройством.4ЛегированиеДобавление в состав материалов примесей для изменения физических и химических свойств основного материала. Различают объемное (металлургическое) и поверхностное (ионное, диффузное и др.) легирование.5УФ-излучениеЭлектромагнитное излучение, занимающее диапазон между фиолетовым концом видимого излучения и рентгеновским излучением. Диапазон условно делят на ближний (380-200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет.6РендерингТермин в компьютерной графике, обознача