Перспективы развития микропроцессоров
Дипломная работа - Компьютеры, программирование
Другие дипломы по предмету Компьютеры, программирование
Введение
Быстодействие компьютера зависит прежде всего от того, какой центральный процессор в нем установлен. Какие бы задачи пользователь не ставил перед системой, процессор играет в них основную роль, и если он достаточно производителен, то работа с компьютером будет продуктивной и комфортной. Если же скорости процессора не хватает, то есть риск, что рабочий процесс превратится в нервотрепку как для рядового пользователя, так и для сотрудника научно-исследовательского центра.
Конечно, тактовая частота процессора является одной из основных характеристик, но далеко не единственной. К примеру такая характеристика, как технологический процесс производства (проектная норма процессора), определяет в первую очередь структурный размер тех элементов, из которых состоит процессор. В частности, от него напрямую зависят размеры транзисторов и их характеристики (длина затвора, время переключения, энергопотребление и т.д.) .
Величина транзисторов в персональных компьютерах, выпущенных IBM в 1983 году, составляла 10 мкм. Сегодня их характерный размер - 0,25 мкм. За это же время тактовая частота процессоров возросла более чем в 50 раз, а плотность транзисторов на кристалле увеличилась в 20 раз.
Полупроводниковая индустрия обладает уникальной способностью поддерживать очень высокие темпы технологического развития на протяжении долгого периода времени. Это позволяет производителям из года в год снижать цены на свои продукты, одновременно увеличивая их быстродействие и расширяя функциональность.
Но бесконечное увеличение скорости вряд ли возможно, ведь существуют чисто физические ограничения. Тем не менее, сотни исследователей, представляющих самые различные организации, упорно трудятся, пытаясь преодолеть технологические барьеры.
Цель выпускной квалификационной работы:
Изучение перспектив развития микропроцессоров
Задачи выпускной квалификационной работы:
изучить различные микропроцессоры;
проанализировать и сравнить эксплуатационные характеристики микропроцессоров;
изучить новые технологии изготовления микропроцессоров
Актуальность:
В настоящее время переход к новым поколениям вычислительных средств приобретает особую актуальность. Это связано с потребностями решения сложных задач больших размерностей. Непрерывный рост характеристик требует разработки и создания принципиально новых вычислительных средств для поддержки их эффективного функционирования.
Возможность достижения высоких частот работы современных микропроцессоров напрямую зависит от количества транзисторов. Однако, ее проектирование усложняется факторами, отражающими современные тенденции в полупроводниковой индустрии:
Переход к новым технологиям. Уменьшение технологических размеров приводит к росту неточности контроля за размерами структур на кристалле в процессе изготовления, негативно влияющих на производительность.
Увеличение степени интеграции приводит к росту флуктуаций напряжения питания и наводок, увеличению нагрузки на процессор и удлинению пути распространения сигнала.
В конечном итоге эти факторы приводят к снижению производительности микропроцессора и к увеличению накладных расходов на организацию архитектуры. Требуется более сложная методология разработки, которая позволит увеличить мощность и быстродействие.
В практической части выпускной квалификационной работы показаны результаты комплексного анализа процессоров фирм AMD и Intel.
1. Развитие и производство микропроцессоров
1.1Семь поколений процессоров
Первое поколение (процессоры 8086 и 8088 и математический сопроцессор 8087) задало архитектурную основу - набор неравноправных 16-разрядных регистров, сегментную систему адресации в пределах 1 Мб с большим разнообразием режимов, систему команд, систему прерываний и ряд других атрибутов. В процессорах применялась малая конвейеризация: пока одни узлы выполняли текущую команду, блок предварительной выборки выбирал из памяти следующую.
Втрое поколение (80286 и сопроцессор 80287) добавило в семейство так называемый защищённый режим, позволяющий употреблять виртуальную память размером до 1Гб для каждой задачи, пользуясь адресуемой физической памятью в пределах 16 Мб. Защищённый режим является основой для построения многозадачных операционных систем, в которых система привилегий жестко регламентирует взаимоотношения задач с памятью, операционной системой и друг с другом. Производительность процессоров 80286 возросла не только в связи с ростом тактовой частоты, но и за iет значительного усовершенствования конвейера.
Третье поколение (80386/80387 с суффиксами DX и SX, определяющими разрядность внешней шины) ознаменовалось переходом к 32-разрядной архитектуре. Кроме расширения диапазона представляемых величин (16 бит отображают целые числа в диапазоне от 0 до 65535 или от -32768 до +32767, а 32 бита - более четырёх миллиардов), увеличилась ёмкость адресуемой памяти. На этих процессорах начала широко использоваться система Microsoft Windows.
Четвертое поколение (80486 также DX и SX) не внесло существенных изменений в архитектуру, зато был принят ряд мер для повышения производительности. В этих процессорах значительно усложнен исполнительный конвейер. В данном поколении отказались от внешнего сопроцессора - он стал размещаться на одном кристалле с центральным (либо его нет совсем).
Пятое поколение (процессор Pentium у фирмы