Переходные процессы в электрических системах

Курсовой проект - Разное

Другие курсовые по предмету Разное

сунок 25. Схема замещения системы обратной последовательности

 

Сопротивление генератора обратной последовательности подсчитывается по формуле

,

где

сверхпереходная реактивность генератора и может быть принята для генераторов всех типов равной .

.

После элементарных преобразований схемы (рис. 25) получаем

;

.

При определении результирующего сопротивления нулевой последовательности следует иметь в виду, что трансформатор блока имеет схему соединения обмоток . Поэтому генератор может быть исключен из схемы замещения нулевой последовательности, а сопротивление трансформатора можно принять равным его сопротивлению прямой последовательности.

Сопротивление нулевой последовательности линии электропередач в значительной степени отличается от сопротивления прямой последовательности и колеблется в весьма широких пределах от в зависимости от конструктивного исполнения передачи. Для данного курсового проекта приняли .

Рисунок 26. Схема замещения системы нулевой последовательности

 

Тогда результирующее сопротивление нулевой последовательности

;

,

а сопротивление шунта короткого замыкания для двухфазного короткого замыкания на землю подсчитывается по формуле

;

.

Проводимость шунта короткого замыкания:

;

.

Сопротивления связи , определяющие амплитуды угловых характеристик для каждого из режимов, определяются по схемам замещения системы (рис. 22, 23, 24):

Тогда амплитуды угловых характеристик, представленных на рис. 27, определяются по формулам:

;

;

;

;

;

.

Рис. 27. Определение предельного угла отключения аварии

 

Используя правило площадей (рис. 27), можно найти предельный угол отключения аварии , величина которого определяется из условия равенства площадки ускорения площадке торможения .

;

.

Величину критического угла можно найти из выражения:

;

.

Тогда

;

Зная предельный угол отключения аварии, можно определить максимально допустимое время отключения короткого замыкания. Для этого необходимо решить дифференциальное уравнение движения ротора:

.

Данное уравнение в силу своей нелинейности может быть решено только численными методами, наиболее предпочтительным из которых является метод последовательных интервалов.

Сущность этого метода заключается в следующем.

Весь процесс качания машины разбивается на ряд небольших и равных между собой интервалов времени. Обычно продолжительность интервала принимается равной с и для каждого из этих интервалов последовательно вычисляется приближенное значение приращения угла .

Возникающий в момент короткого замыкания избыток мощности сообщает ротору некоторое ускорение . Для достаточно малого интервала времени можно допустить, что избыток мощности в течение этого периода остается неизменным. Тогда по формулам равноускоренного движения нетрудно вычислить приращение скорости машины и угла в течение первого интервала:

;

.

;

Величина ускорения и, следовательно,

;

здесь угол выражен в градусах, а время в секундах.

Обозначив

;

,

получим

;

.

Зная приращение угла в первом интервале, можно найти абсолютное значение угла в конце этого интервала времени:

;

.

Для нового значения угла можно определить величину избытка мощности в начале второго интервала времени по формуле

;

.

Тогда приращение угла на втором интервале

;

.

Для произвольного -го интервала приращение угла определяется выражением

.

Получаем, следующие значения (табл.5):

 

Таблица 5

012345625,45126,68130,34436,35944,59754,90167,100,050,10,150,20,250,3

Применив совместно метод последовательных интервалов и способ площадей, можно найти максимально допустимое время отключения короткого замыкания. Для этого с помощью метода последовательных интервалов вычисляют время, в течение которого ротор достигает угла . Этот промежуток времени и соответствует предельному времени отключения короткого замыкания с (рис. 28).

Рисунок 28. Расчет предельного времени отключения аварии

Заключение

 

Таким образом, в ходе работы было проведено исследование статической и динамической устойчивости простейшей регулируемой системы, состоящей из генераторной станции, работающей на шины бесконечной мощности через две параллельные линии электропередачи. Анализируя устойчивость системы по алгебраическому критерию Гурвица и частотному критерию Михайлова, выяснили, что система с исходным параметром системы АРВ пропорционального действия (см. табл.1) неустойчива. Используя D-разбиение, была найдена область допустимых значений . Кроме того, произведен расчет динамической устойчивости системы с определением предельного угла отключения аварии при двухполюсном коротком замыкании на землю одной из параллельных линий вблизи шин генераторной станции.

Литература

 

  1. Столбов Ю.А., Пястолов В.В. Электромеханические переходные процессы: Учебное пособие по курсовому проектированию. Челябинск: ЮУрГУ, 2005. 47 с.;
  2. Веников В.А. Переходные электромеханические процессы в электрических системах.- Москва: ВШ, 1978. 415 с.;
  3. СТП. Челябинск: ЮУрГУ, 2001.