Переходные процессы в электрических системах

Курсовой проект - Разное

Другие курсовые по предмету Разное

Затем по известным из курса электрических сетей формулам определяются удельные километрические индуктивные и емкостные сопротивления передачи:

Где - среднегеометрическое расстояние между проводами, мм;

Емкостная проводимость

и активное сопротивление одной цепи линий электропередачи

При составлении электрической схемы замещения системы (рис. 2), можно пренебречь активными сопротивлениями и проводимостями трансформатора.

 

 

 

 

 

 

 

Рисунок 2. Схема замещения системы

 

Параметры всех элементов, входящих в схему замещения должны быть выражены в относительных единицах, приведенных к базисным условиям. Для упрощения расчетов удобно за базисную мощность принять полную мощность, передаваемую генерирующей станцией в систему бесконечной мощности ,

а за базисное напряжение напряжение на шинах приемной системы .

,

где

, с

.

Ветвь проводимости, подсоединенная к линиям системы бесконечной мощности, исключается из схемы замещения.

Таким образом, эквивалентная схема замещения системы может быть представлена последовательным соединением двух четырехполюсников, разделенных на рис.2 вертикальной пунктирной линией, Т-образного четырехполюсника, содержащего элементы , и Г-образного, состоящего из элементов и .

Обобщенные постоянные Т-образного четырехполюсника:

Выполним проверку:

Обобщенные постоянные Г-образного четырехполюсника:

;

Делаем проверку расчетов:

Обобщенные постоянные эквивалентного четырехполюсника (рис.3) подсчитываются по формулам

 

 

 

Рисунок 3. Эквивалентный четырехполюсник

Для системы с эквивалентными постоянными уравнения для токов и напряжений будут представлены в виде:

При построении круговых диаграмм вектор напряжения в конце передачи удобно совместить с действительной осью комплексной плоскости мощностей, т.е. . Тогда , а ЭДС генератора будет опережать напряжение на угол нагрузки , т.е. . Из первого уравнения системы получаем:

Тогда комплексы полных мощностей начала и конца передачи определяются выражениями:

,

.

Таким образом, выражения для мощностей начала и конца системы представляют собой сумму двух векторов: для мощности в начале системы первый вектор и второй . Их геометрическая сумма и дает комплекс мощности в начале передачи.

Комплекс мощности в конце передачи состоит из суммы векторов и .

Действительные части этих комплексов представляют собой соответственно активные мощности и , а мнимые реактивные и . При постоянстве ЭДС в начале и напряжения в конце системы единственной переменной величиной является угол . В этом случае комплексы и остаются неизменными по величине и по фазе, а комплексы и , оставаясь неизменными по величине, изменяют угол поворота с изменением угла . При они занимают положение , где аргумент комплекса , . При угле , отличном от нуля, они поворачиваются на этот угол: для начала системы против часовой стрелки и для конца системы по часовой стрелке (рис. 4).

Из рисунка видно, что при этих условиях концы комплексов полных мощностей начала и конца перемещаются по окружностям, центры которых определяются радиус-векторами:

для мощности в начале системы

для мощности в конце системы

Радиусы обеих окружностей одинаковы:

Отсчет углов производится от линии, проведенной из центра окружностей под углом к горизонтали.

Из характерных для четырехполюсников соотношений известно:

где и собственные, а взаимная проводимости системы.

Угловые характеристики для активных мощностей начала и конца передачи определяются по выражениям:

,

,

где

Рис. 4. Круговая диаграмма передачи

 

2. Построение статической и динамической угловых характеристик генераторной станции и определение коэффициента запаса статической устойчивости

 

При наличии у генератора автоматического регулятора пропорционального типа машина характеризуется переходным сопротивлением , и действующей за ним переходной ЭДС , величина которой поддерживается постоянной при изменении нагрузки.

Для качественной оценки влияния АРВ на коэффициент статической устойчивости системы рассмотрим упрощенную схему замещения сети, пренебрегая активными сопротивлениями элементов и контуром намагничивания трансформатора.

На рис.5 изображена совмещенная схема замещения системы, в которой генерирующая станция при отсутствии АРВ представлена ЭДС холостого хода и продольной синхронной реактивностью , а при наличии АРВ переходной ЭДС за переходным сопротивлением .

 

 

 

 

 

 

 

Рисунок 5. Совмещенная схема замещения системы

Угловая характеристика генератора при отсутствии АРВ, представленная на рис.6, построена согласно выражению

.

Это так называемая статическая характеристика синхронной машины при поддержании в ней неизменного тока возбуждения ().

При изменении нагрузки, например, при ее возрастании угловая характеристика от начального угла пойдет по другой криво?/p>