Анализ свойств, звукоизоляции и звукопроницаемости материалов. Методы и свойства их измерения

Дипломная работа - Физика

Другие дипломы по предмету Физика

? и связи, как правило, имеет непрерывно изменяющиеся форму и состав спектра. Спектры могут быть высоко - и низкочастотными, дискретными и сплошными. В первую очередь представляют интерес средний спектр для источников звука каждого типа, а для оценки искажений сигнала - спектр, усредненный за длительный интервал. Усредненный спектр может быть, как правило, сплошной и достаточно сглаженный по форме.

Сплошные спектры характеризуются зависимостью спектральной плотности от частоты (эту зависимость называют энергетическим спектром). Спектральной плотностью называется интенсивность звука в полосе частот шириной, равной единице частоты. Для акустики эту полосу берут равной 1 Гц. Спектральная плотность

 

 

где - интенсивность, измеренная в узкой полосе частот с помощью узкополосных фильтров.

Для удобства оценки введена логарифмическая мера плотности спектра аналогично уровню интенсивности. Эту меру называют уровнем спектральной плотности или спектральным уровнем. Спектральный уровень

 

 

где - интенсивность, соответствующая нулевому уровню, как и для оценки уровня интенсивности.

Очень часто для характеристики спектра вместо спектральной плотности используют интенсивности и уровни интенсивности, измеренные в октавной, полуоктавной или третьоктавной полосе частот. Нетрудно установить связь между спектральным уровнем и уровнем в октавной (полуоктавной или третьоктавной) полосе. Спектральный уровень

(1.21)

 

а уровень в октавной полосе

 

(1.22)

 

где - ширина соответствующей октавной полосы.

Вычитая второе из первого, находим

 

(1.23)

 

При известном спектре сигнала можно определить его суммарную интенсивность. Так, если спектр задан в уровнях интенсивности для третьоктавных полос, то достаточно перевести эти уровни (в каждой из полос) в интенсивности и затем просуммировать все интенсивности. Сумма всех дает суммарную интенсивность для всего спектра. Суммарный уровень

 

(1.24)

 

Если спектр задан в спектральных уровнях, то, исходя из их определения, для всего спектра точный суммарный уровень

 

(1.25)

 

где и - верхняя, и нижняя границы частотного диапазона. Приближенно суммарный уровень можно найти делением частотного диапазона на полосок шириною , в пределах которых спектральный уровень примерно постоянен. Суммарный уровень

 

(1.26)

 

1.4.5 Временные характеристики сигнала

К временным характеристикам сигнала относятся уровнеграмма и время корреляции. Уровнеграмма сигнала дает возможность определить резкие переходы интенсивности и, следовательно, с ее помощью можно предъявить требование к постоянным времени трактов передачи сигнала. Такие временные характеристики сигнала, как время корреляции, используют редко, хотя опыты показывают, что этот параметр играет значительную роль при определении качества звучания [3].

 

.4.6 Первичный речевой сигнал

Импульсы основного тона имеют пилообразную форму, и поэтому при их периодическом повторении получается дискретный спектр с большим числом гармоник (до 40), частоты которых кратны частоте основного тона. Огибающая спектра основного тона имеет спад в сторону высоких частот с крутизной около 6 дБ/окт. Например, для мужского голоса уровень гармоник на частоте 3000 Гц ниже уровня на 100 Гц примерно на 30 дБ.

Через речевой тракт при произнесении звуков проходят или тональный импульсный сигнал, или шумовой, или тот и другой вместе. Речевой тракт представляет собой сложный акустический фильтр с рядом резонансов, создаваемых полостями рта, носа и носоглотки, т. е. с помощью артикуляционных органов речи. Вследствие этого тональный или шумовой спектры с монотонной огибающей превращаются в спектры с рядом максимумов и минимумов. Максимумы спектра называют формантами, а нулевое значения - антиформантами. Огибающая спектра для каждой фонемы имеет индивидуальную и вполне определенную форму. При произнесении речи спектр ее непрерывно изменяется, в результате чего образуются формантные переходы. Частотный диапазон речи находится в пределах 70 - 7000 Гц [2].

 

.4.7 Вторичный сигнал

В идеальном случае вторичный сигнал должен точно воспроизводить первичный, но это не всегда требуется, так как слух человека может и не заметить их несоответствие. Нарушение точности передачи, замечаемое слухом, бывает самого разнообразного вида. Рассмотрим основные из них: потерю акустической перспективы, смещение уровней, ограничение динамического и частотного диапазона сигнала, помехи, искажения.

Потеря акустической перспективы. При передаче звукового сигнала по одноканальной системе получается ощущение слушания одним ухом, даже при наличии нескольких микрофонов в помещении, откуда ведется передача, и при разнесенных вторичных источниках звука. Источник звука для слуха будет всегда казаться находящимся в некотором среднем положении по отношению к фактическим вторичным источникам, поскольку временной сдвиг и разность уровней для обоих ушей слушателя не зависят от местонахождения первичного источника звука. Этот дефект может быть до некоторой степени исправлен с помощью стереофонической системы передачи, основанной на многоканальной системе передачи сигнала.

Смещение уровней. Поскольку по тракту передачи сигналов не передается информация об абсолютных уровнях звучания первичного сигнала, то слушатель (а при массовом слушании - опе?/p>