Анализ свойств, звукоизоляции и звукопроницаемости материалов. Методы и свойства их измерения

Дипломная работа - Физика

Другие дипломы по предмету Физика

коизлучение ограждением при возбуждении его звуковых колебаний воздушным звуком; возможность регулирования звукоизоляции (кроме ее регулирования изменением массы) [1].

Для изучения процесса прохождения звука во всем нормируемом диапазоне частот через ограждение с произвольными размерами в плане, граничными условиями и значениям потерь энергии на внутреннее трение и для решения упомянутых выше задач предлагается другая модель, основанная на вводимом понятии самосогласования (согласования) звуковых полей перед и за ограждением с волновым полем самого ограждения. Предлагаемые в модели расширенные начала о звуковых колебаниях основаны на волновом движении материи, а исходные функции выдерживают требования классических дифференциальных уравнений с последующим выходом из этих рамок по мере усложнения и накопления уровней волновых процессов. Данное положение относится и к волновому вибрационному полю, которое представляет интерес не только как передаточное звено от падающего звука к прошедшему, но и как самостоятельный фундаментальный колебательный процесс [2].

 

.2 Конструкции объектов и звук

 

.2.1 Распространение звука в ограниченном пространстве

При своем распространении звуковые волны, доходя до какой-либо преграды, частично отражаются от нее, а частично ее огибают. Последний эффект определяется дифракционной способностью волн и зависит от соотношения между размерами преграды и длиной волны. Для звуковых волн в воздухе в диапазоне частот 30-15000 Гц дифракция может наблюдаться при размерах преград от нескольких сантиметров до нескольких метров. При встрече звуковых волн с преградами больших размеров дифракционный эффект присутствует только на краях преграды. Часть энергии звуковых волн отражается, а часть поглощается, соотношение этих частей определяется свойствами материала преграды. Для учета этого эффекта введены понятия коэффициентов поглощения и отражения звука. Отношение интенсивности отраженных звуковых волн к интенсивности падающих называется коэффициентом отражения , а отношение поглощенной энергии к падающей - коэффициентом поглощения

 

 

где - интенсивность поглощенной энергии. Если нет дифракции, то . Заметим, что коэффициенты поглощения и отражения зависят от частоты. Отраженные волны интерферируют с падающими волнами и образуют стоячие волны с пучностями и узлами [5].

 

.2.2 Звукопоглощающие материалы и конструкции

Причиной отражения звуковых волн от любой пространственной границы двух сред является неравенство (несогласованность) их волновых акустических сопротивлений. Если волновое акустическое сопротивление воздуха равно , а другой (отражающей) среды - , то по общей теории отражения волн коэффициент отражения по звуковому давлению а для случая плоской падающей волны

 

(1.3)

 

Таким образом, отражающая способность среды тем больше, чем резче отличается ее волновое сопротивление от волнового сопротивления первой среды, например воздуха.

Так как обычно пользуются коэффициентами отражения и поглощения по интенсивности звука, то соответствующий коэффициент отражения , а коэффициент поглощения

 

(1.4)

 

Сопротивления обеих сред в общем случае могут быть комплексными, т. е. и , поэтому абсолютное поглощение (коэффициент отражения, равный нулю) может быть только при равенстве вещественных и мнимых частей сопротивлений и

Отраженные звуковые волны, интерферируя с падающими, образуют стоячие волны с пучностями и узлами. В отсутствии реактивных составляющих волновых сопротивлений у обеих сред фаза отраженной волны может или совпадать с фазой падающей или быть сдвинутой на ? в зависимости от того, какое из сопротивлений больше или , т. е. у границы может быть либо пучность, либо узел колебаний.

В общем случае сдвиг фаз между падающей и отраженной волнами получается в интервале между 0 и , поэтому у границы двух сред будет иметь место промежуточное состояние между пучностью и узлом.

Если звуковая волна падает на поверхность среды с большим акустическим сопротивлением (например, стена из мрамора), то непосредственно около нее скорость колебаний будет равна нулю, потому что частицы воздуха, подойдя к стене, будут останавливаться и затем двигаться назад. Это означает, что отраженная волна для скорости колебаний будет иметь противоположную фазу по отношению к падающей (сдвиг по фазе на ), т. е. у поверхности стены получается узел скорости колебаний. В то же время звуковое давление у поверхности стены будет иметь пучность, так как давления падающей и отраженной волн, как скалярные величины, складываются арифметически (сдвиг фаз равен нулю). Если акустическое сопротивление отражающей стены будет меньше, чем для воздуха, то картина меняется: у поверхности стены будет пучность скорости колебаний и узел давления, т. е. отраженная волна давления будет сдвинута на , а отраженная волна скорости колебаний будет в фазе с падающей.

Следует заметить, что коэффициенты отражения зависят от угла падения волн: меньший коэффициент отражения получается при падении на отражающую поверхность под прямым углом. Он называется нормальным. В том случае, когда волны падают под всевозможными углами (рассеянная волна), коэффициент отражения (и поглощения) называют диффузным.

Звукопоглощающие материалы по строению делятся на сплошные и пористые, а по применению - на стеновые, облицовочные, драпировки и специальные.

К последним отн?/p>