Особенности решения задач в эконометрике
Контрольная работа - Экономика
Другие контрольные работы по предмету Экономика
жду переменными x и y неслучайна.
3. Выбор лучшего уравнения.
Составим таблицу полученных результатов исследования.
Таблица 4
УравнениеКоэффициент (индекс) корреляцииКоэффициент (индекс) детерминацииСредняя ошибка аппроксимацииКоэффициент эластичностилинейное0,9510,9056,650,515полулогагифмическое0,9150,8388,740,414степенное0,9360,8787,060,438
Анализируем таблицу и делаем выводы.
- Все три уравнения оказались статистически значимыми и надежными, имеют близкий к 1 коэффициент (индекс) корреляции, высокий (близкий к 1) коэффициент (индекс) детерминации и ошибку аппроксимации в допустимых пределах.
- При этом характеристики линейной модели указывают, что она несколько лучше полулогарифмической и степенной описывает связь между признаками x и у.
- Поэтому в качестве уравнения регрессии выбираем линейную модель.
- Для выбранной модели проверим предпосылку МНК о гомоскедастичности остатков, т. е. о том, что остатки регрессии имеют постоянную дисперсию.
Используем метод Гольдфельдта-Квандта.
- Упорядочим наблюдения по мере возрастания переменной х.
- Исключим из рассмотрения 3 центральных наблюдения.
- Рассмотрим первую группу наблюдений (малые значения фактора х) и определим
этой группы.
- Рассмотрим вторую группу наблюдений (большие значения фактора х) и определим
этой группы.
- Проверим, значимо или незначимо отличаются дисперсии остатков этих групп.
Таблица 5
№xyyxx2y214,114,258,2216,81201,6415,47-1,271,6025,318,497,5228,09338,5616,501,903,6137,116,4116,4450,41268,9618,05-1,652,7248,521,7184,4572,25470,8919,262,445,97510,218,5188,70104,04342,2520,72-2,224,93611,022,2244,20121,00492,8421,410,790,63сумма46,2111,4889,53392,602115,14111,400,0019,46среднее7,7018,57148,2665,43352,5218,570,003,89
Определим параметры уравнения регрессии 1 группы:
Уравнение регрессии 1 группы:
=11,93+0,86x
Таблица 6
№xyyxx2y21018,328,2516,06334,89795,2427,560,640,411118,626,1485,46345,96681,2127,85-1,753,061219,730,2594,94388,09912,0428,921,281,631321,328,6609,18453,69817,9630,49-1,893,561422,134,0751,40488,411156,0031,272,737,471524,232,3781,66585,641043,2933,32-1,021,03сумма124,2179,43738,702596,685405,74179,400,0017,17среднее20,7029,90623,12432,78900,9629,900,003,43Параметры уравнения регрессии 2 группы:
Уравнение регрессии 2 группы:
=9,7+0,98x
S1=19.46>S2=17.17
Fфакт.< Fтабл.
следовательно, остатки гомоскедастичны, предпосылки МНК не нарушены.
5. Рассчитаем прогнозное значение результата у, если прогнозное значение фактора х увеличивается на 5% от его среднего уровня.
Точечный прогноз:
11,59+0,871,0514,13=24,515 млн. руб.
Для данной величины выпуска продукции прогнозное значение затрат на производство составляет 24,515 млн. руб.
Для уровня значимости ?= 0,05 определим доверительный интервал прогноза.
Предварительно определим стандартные ошибки коэффициента корреляции и параметра b.
Стандартная ошибка коэффициента корреляции:
Ошибка прогноза:
Доверительный интервал прогноза значений y при с вероятностью 0,95 составит:
Прогноз надежный, но не очень точный, т. к.
Задание 2
Имеются данные о заработной плате у (тысяч рублей), возрасте х1 (лет), стаже работы по специальности х2 (лет) и выработке х3 (штук в смену) по 15 рабочим цеха:
№yх1х2х313,23061224,541182033,337111243,03391852,82441563,944191773,737181784,239222694,7493026104,4482422112,929818123,731620132,426510144,5471920152,629415
Требуется:
- С помощью определителя матрицы парных коэффициентов межфакторной корреляции оценить мультиколлинеарность факторов, исключить из модели фактор, ответственный за мультиколлинеарность.
- Построить уравнение множественной регрессии в стандартизованной форме:
- Оценить параметры уравнения.
- Используя стандартизованные коэффициенты регрессии сравнить факторы по силе их воздействия на результат.
- Оценить тесноту связи между результатом и факторами с помощью коэффициента множественной корреляции.
- Оценить с помощью коэффициента множественной детерминации качество модели.
- Используя F-критерий Фишера оценить статистическую значимость присутствия каждого из факторов в уравнении регрессии.
- Построить уравнение множественной регрессии в естественной форме, пояснить экономический смысл параметров уравнения.
- Найти среднюю ошибку аппроксимации.
- Рассчитать прогнозное значение результата, если прогнозное значение факторов составит: х1 = 35 лет, х2 = 10 лет, х3 = 20 штук в смену.
Решение.
Для оценки мультиколлинеарности факторов используем определитель матрицы парных коэффициентов корреляции между факторами.
Определим парные коэффициенты корреляции.
Для этого рассчитаем таблицу 7.
Используя рассчитанную таблицу, определяем дисперсию y, x1, x2, x3.
Найдем среднее квадратическое отклонение признаков y, x1, x2, x3, как корень квадратный из соответствующей дисперсии.
Определим парные коэффициенты корреляции:
таблица 7
№yy2x1x12x2x22x3x32yx1yx2yx3x1x2x1x3x2x3Аi13,210,24309006361214496,019,238,4180360722,870,3310,18