Основы построения систем распознавания образов
Методическое пособие - Компьютеры, программирование
Другие методички по предмету Компьютеры, программирование
?тов и т.п.).
Введем функцию h(x,y,a,b), которая описывает пространственные связи для точечного процесса, то есть процесса, который отличен от нуля лишь в точке с координатами (a ,b ). Тогда зарегистрированное изображение будет иметь вид:
Здесь зависимость распределения изображения от амплитуды сигнала точечного источника учтена введением в функцию h пятого аргумента.
Рассмотрим теперь сигнал от второго точечного объекта, расположенного там же, где и первый:
Согласно принципу суперпозиции излученные энергии сигналов суммируются:
Это - нелинейная суперпозиция в силу нелинейности слагаемых в правой части равенства. В итоге, как видим, суммированию измеряемых распределений в плоскости изображения не соответствует сложение функций в плоскости объекта.
Если же система линейна, то
а суперпозиция будет иметь следующий вид
То есть, в случае линейности системы сложение функций в плоскости объекта приводит к суммированию распределений в плоскости изображения с точностью до единственной функции преобразования h.
Математически последнее является очень важным упрощением, так как линейность в рассматриваемых задачах предполагается всегда в первом приближении, даже когда это, строго говоря, не соответствует действительности.
Теперь можно перейти к обобщенным соотношениям, связывающим пространства объекта и его изображения. Для нелинейной системы визуализации имеем:
а для линейной
Функция h, используемая для связи распределений f и g, называется функцией отклика точечного источника (ФОТИ). Зависимость ее от всех четырех пространственных координат определяет ФОТИ как пространственно-зависимую. Если же точечный процесс одинаков для всех точек плоскости объекта, то h - пространственно-инвариантна. При этом h зависит лишь от разности координат (x-a,y-b). Для пространственно-инвариантной системы
при этом для линейной пространственно-инвариантной системы
Последнее выражение известно как интеграл свертки, согласно которому распределение по изображению представляет собой свертку распределения по объекту с ФОТИ. Именно функция h описывает процесс переноса информации от объекта в пространство изображения и характеризует все геометрические искажения, присущие процессу визуализации.
Окончательное упрощение обобщенных соотношений, описывающих процесс формирования изображений, получается в том случае, когда свойства системы в двух перпендикулярных направлениях не коррелируют друг с другом. Это означает, что двухмерную ФОТИ можно представить в виде произведения двух одномерных ФОТИ. Так для пространственно-зависимой системы имеем
а для пространственно-инвариантной
Это свойство системы называется разделимостью.
В итоге для линейной, пространственно-инвариантной разделимой системы получаем
Учитывая рассмотренное, легко понять, что, наблюдая изображение, мы не можем считать его точным представлением распределения по объекту. Это можно заметить путем внимательного рассмотрения изображения и сравнения его с объектом или явлением. Причина - несовершенства системы визуализации.
Именно поэтому в теории обработки изображений большое внимание уделяется методам исключения соответствующих искажений, получившим название обращение свертки (Вытекает из рассмотрения хотя бы последнего интеграла свертки!).
В соответствующих задачах интеграл свертки рассматривается с учетом искажения изображений шумами. Так для линейных систем полное представление о задаче создает выражение
где n(x,y) - распределение шума в изображении.
* * *
Теперь сконцентрируем внимание на следующем важном термине распознавания образов - “класс”. Здесь, прежде всего, обратим внимание на то, что как человек, так и автомат принимают решение на основе отождествления совокупности конкретных значений характеристик объектов или явлений не просто друг с другом, а обычно с некоторым классом, в который объединяются объекты или явления, имеющие общие свойства (например: характеристики выхода из строя агрегатов и систем той же АЭС - класс опасных отказов или класс отказов, требующих определенного технического вмешательства, но неопасных).
Таким образом, классы - это объединения объектов (явлений), отличающиеся общими свойствами, интересующими человека.
Всегда, имея в виду цель распознавания, в конечном итоге принятое решение об отнесении объекта к тому или иному классу определяет реакцию соответствующей системы на данную входную ситуацию однозначно.
Таким образом, в самых общих чертах распознавание можно определить как соотнесение объектов или явлений на основе анализа их характеристик, представляющих образы этих объектов, с одним из нескольких, заранее определенных классов.
И следует обратить внимание на то, что термин “распознавание” в равной мере относится как к процессам восприятия и познания, свойственным человеку и живым организмам, так и к техническим попыткам человека реализовать “электронные” или “вычислительные” аналоги этих процессов, то есть к решению задач в рамках предмета распознавания как раздела информатики.
1.2.2. Системы распознавания
До этого мы говорили о проблеме распознавания в целом, о теории, о возможности замены человека автоматом. Теперь сосредоточим внимание на практическом применении соо