Основы построения систем распознавания образов

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

этот образ характеризует описываемый объект. Однако в любом случае мы имеем дело с описанием, а не с самим объектом, который всегда богаче описания. Итак, любой образ представляется некоторым набором признаков. Поэтому вполне допустимо наряду с выражением “распознавание образов” применять выражение “отождествление некоторых наборов описаний объектов”.

* * *

Достаточно наглядно и теоретически и практически понимается различие между объектом и образом, если рассмотреть различия между картиной (художественное полотно), являющейся плоским объектом, и таким ее изображением как фотографическое или компьютерное, введенное телекамерой или сканером.

Простота примера состоит в том, что как картина, так и ее изображение на пленке или в телевизионном кадре записи - двумерны. Вводя соответствующие системы координат, представим их так

f(a,b) - объект;

g(x,y) - изображение объекта.

Общепринято объект обозначать буквой f, а изображение -g.

Заметим сразу, что изображение может выступать как образ картины в том числе в автоматической системе распознавания, будучи введенным в компьютер для прямого сопоставления с другими изображениями. Но при этом обратим внимание и на то, что изображение здесь - это уже не сам объект.

Можно понять, что идеальная изображающая система - это такая система, для которой в любой точке пространства выполняется равенство f = g. На практике почти не существует таких систем. Функциональные связи между f и g всегда подлежат экспериментальному определению.

Для понимания сути вопроса рассмотрим простейшую оптическую систему получения фотографий картины, нарисованной на двухмерном экране. Здесь мы имеем дело с объектом, лежащем в плоскости, и таким же плоским изображением.

В данном примере распределения f и g имеют одну и ту же размерность, поскольку они являются пространственным распределением интенсивности света или его цвета в плоскости.

Фотография формируется квантами света, отраженного от картины, прошедшего через линзовую систему фотоаппарата и попавшего на фотопленку. Такое формирование изображения приводит к потери качества за счет искажений и несовершенства приемного устройства, и следовательно, в этом случае f и g не равны друг другу. И только если известен закон потери качества, то можно провести компенсацию искажений путем соответствующей обработки изображения.

Другим примером могут быть двухмерные изображения g распределения f радиационного препарата в организме человека, полученные с помощью гамма-камеры, поворачивающейся последовательно на определенные углы относительно пациента. Здесь надо избавиться от иллюзии того, что полученные детали изображения соответствуют областям интереса врача-диагноста. Дело в том, что рассмотренное визуализированное изображение - это не распределение активности поглощения в теле пациента, а распределение интенсивностей только в элементах изображения.

То есть, изображение g есть некоторое представление (описание) объекта f, которое, хотя и располагается в том же месте, но может иметь отличия не только качественные, но и такие количественные как размеры. В данном случае приходится констатировать, что процессы в гамма-камере, с помощью которой производится регистрация исходных данных, на сегодняшний день не имеют математического описания, позволяющего связать объект с его изображением. Это еще раз заставляет подчеркнуть, что врач не видит изменений интенсивности поглощения гамма-излучения в теле пациента, а только - распределение интенсивностей на изображении, полученном с помощью системы регистрации. А отсутствие математического описания связей изображения и процесса не позволяет строго трактовать результаты медицинского наблюдения. Остается надеяться только на опыт врача.

Разумно считать, что объект и его изображение физически совпадают и связаны друг с другом соотношениями, характеризующими конкретный метод визуализации, хотя в ряде случаев могут иметь отличающиеся размеры.

Таким образом, в общем случае не существует идеального (1:1) соответствия между информацией, содержащейся в какой-либо точке с координатами (a, b), и информацией, соответствующей точке (x, y). В принципе информацию от каждой точки объекта можно “рассеять” по всем точкам изображения. Однако в любом полезном методе визуализации главный вклад в каждую точку (a, b) будет давать отдельная конкретная точка (x, y). Другие, соседние точки будут вносить меньшее количество информации, причем уменьшение указанного вклада происходит достаточно резко по мере удаления от основной точки с координатами (x, y). Эти выводы известны как принцип близости, а распределение по изображению некоторой точки из пространства объекта может зависеть как от значения поля в точке объекта, так и от поля в точках, расположенных около этой точки и удаленных на бесконечное расстояние от нее.

Какая же существует физическая связь между пространством объекта и пространством изображения?

В плоскость изображения попадает информация исходя из наличия информации в плоскости объекта, а также в зависимости от того, какой кодирующий носитель информации используется в данном методе визуализации (фотография формируется за счет переноса фотонов, яркостная картина УЗИ - за счет рассеяния продольных ультразвуковых волн, степень поглощения радиационных препаратов - путем счета испущенных -квантов, рентгенограмма - за счет линейного затухания рентгеновских ква?/p>