Информация по предмету Биология

  • 1381. Рекомбинантные белки. Плазмиды
    Другое Биология

     

    1. Атанасов А. Биотехнология в растениеводстве. Новосибирск: ИЦиГСО РАН, 1993. 241 с.
    2. БаранововВ.С.Генная терапия медицина XXI века // Соросовский образовательный журнал. № 3. 1999. С. 3 68.
    3. БекерМ.Е., ЛиепиньшГ.К., РайпулисЕ.П.Биотехнология. М.: Агропромиздат, 1990. 334 с.
    4. ГлебовО.К.Генетическая трансформация соматических клеток // Методы культивирования клеток. Л.: Наука, 1988.
    5. ГликБ., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. М.: Мир, 2002.
    6. ЕгоровН.С., СамуиловВ.Д.Современные методы создания промышленных штаммов микроорганизмов // Биотехнология. Кн. 2. М.: Высшая школа, 1988. 208 с.
    7. Основы фармацевтической биотехнологии: Учебное пособие / Т.П.Прищеп, В.С.Чучалин, К.Л.Зайков, Л.К.Михалева. Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.
    8. ПирузянЭ.С., АндриановВ.М.Плазмиды агробактерий и генная инженерия растений. М.: Наука, 1985. 280 с.
  • 1382. Рекомбинантные вакцины (Генная инженерия)
    Другое Биология

    Фрагменты ДНК для встраивания в вектор можно получить непосредственно из хромосомной ДНК, расщепив ее рестриктазами или разрушив случайным образом (например, с помощью ультразвука) на сегменты с примерно одинаковой длиной. Выделение генов с помощью "вырезания" из генома, как правило, состоит из четырех этапов: 1) получение клонотеки фрагментов генома; 2) выявление фрагментов генома, содержащих необходимый ген, и точная локализация гена в данном фрагменте; 3) вырезание гена из фрагмента(ов) с помощью рестриктаз и сшивка участков гена с помощью ДНК-лигазы фага Т4, если эти участки получены из различных фрагментов; 4) амплификация гена в составе векторной молекулы. Указанный способ получения генов является наиболее приемлимым применительно к протозойным возбудителям, бактериям и для некоторых сложно устроенных ДНК-содержащих вирусов. Такие операции проводятся, в частности, при создании так называемых "библиотек генов", то есть набора одинаковых векторных систем, в совокупности несущих в себе весь геном данного организма. Однако этот подход имеет ряд существенных недостатков. Во-первых, очень сложна задача подбора рестриктаз, позволяющих вырезать из геномной ДНК или клонированного фрагмента генома цельный ген. Как правило, вместе с геном остаются фланкирующие его лишние нуклеотидные последовательности, что мешает дальнейшему использованию этого гена, или же рестриктазы отрезают часть гена, делая его функционально неполноценным. Во-вторых, создание клонотеки генома возбудителя представляет специальную задачу и требует больших затрат времени. Наконец, для ряда ДНК-содержащих вирусов (паповавирусы) доказан сплайсированный характер структуры генов. Вполне понятно, что выделенные гены этих вирусов вследствие наличия интронных областей не будут проявлять функциональной активности в бактериальных клетках и окажутся непригодными при решении задач по конструированию рекомбинантных противовирусных вакцин. В-третьих, если ген составляет незначительную долю от всей геномной ДНК, то возникают большие трудности с его изоляцией и идентификацией.

  • 1383. Рекомбинантные(химерные) ДНК
    Другое Биология

     

    1. Баурин В.В., Мирошниченко О.И., Захарченко В.И. и др. // Генноинженерные сельскохозяйственные животные, Москва, 1995, с. 154-165.
    2. Бондарук В.В., Захарченко В.И., Беляева Р.Х. и др. // Генноинженерные сельскохозяйственные животные, Москва, 1995, с. 138-153.
    3. Брем Г., Зиновьева Н., Эрнст Л.К. // С.-х. биология, 1993, № 6, с. 3-27.
    4. Брем Г., Кройслих Х., Штранцингер Г. Экспериментальная генетика в животноводстве // М.: РАСХН, 1995, 326 с.
    5. Васильев И.М., Шихов И.Я., Некрасов А.А. и др. // Доклады АН СССР, 1989, № 1, с. 206-209.
    6. Гольдман И.Л., Башкеев Е.Д., Гоголевский П.А. и др. // Доклады РАСХН, 1992, № 9-10, с. 25-30.
    7. Гольдман И.Л., Разин С.В., Эрнст Л.К. и др. // Биотехнология, 1994, № 2, с. 3-12
    8. Ениколопов Г.Н., Захарченко В.И., Гращук М.А. и др. // Доклады АН СССР, 1988, т. 299, № 5, с. 1246-1249.
    9. Зеленина И.А., Семенова М.Л., Алимов А.А. и др. // Генетика, 1991, Т. 27, № 12, с. 2182-2186.
    10. Зиновьева Н.А. // Автореф. докт. дисс.: Дубровицы, 1998, 36 с.
    11. Зиновьева Н., Безенфельдер У., Мюллер С. и др.// Биотехнология, 1998а, № 1, с. 3-11
    12. Зиновьева Н., Безенфельдер У., Мюллер С. и др.// С.-х. биология,1998б, № 6, с. 31-34.
    13. Зиновьева Н., Безенфельдер У., Мюллер М. // Биотехнология, 1998в, 4, 17-31.
    14. Зиновьева Н.А., Эрнст Л.К., Брем Г. Трансгенные животные и возможности их использования: молекулярно-генетические аспекты трансгенеза в животноводстве // Дубровицы, 2000, 128 с.
    15. Кузнецова И.В., Кузнецов А.В., Сигаева В.А. и др. // Биотехнология, 1993, т. 11-12, с.2-5.
    16. Ларионов О., Добровольский В., Лагутин О. // «Новые направления биотехнологии», Пущино, 1994, 127.
    17. Козикова Л.В., Медведев С.Ю., Булла Й. И др. // «Биотехнология в растениеводстве, животноводстве и ветеринарии», Москва, 2001, с. 160-161.
    18. Колесников В.А., Алимов А.А., Барминцев В.А. и др. // Генетика, 1990; Т. 26, № 12, с. 2122-2126.
    19. Колесников В.А., Зеленина И.А., Семенова М.Л. и др. // Онтогенез, Т. 26, № 6, 467-480.
    20. Кузнецов А.В., Кузнецова И.В. // Онтогенез, 1995, Т.26, № 4, с. 300-309.
    21. Кузнецова И.В., Кузнецов А.В., Сигаева В.А. и др. // Биотехнология, 1993, № 11-12, с. 2-5.
    22. Кузнецова И.В., Щит И.Ю.; Кузнецов А.В. // С.-х. биология, 1998; № 6, с. 40-44.
    23. Мирошниченко О.И., Захарченко В.И., Прокофьев М.И. и др. // Доклады ВАСХНИЛ, 1988, № 5, с. 31-32.
    24. Прокофьев М.И., Ларионов О.А., Мезина М.Н. и др. // «ДНК-технологии в клеточной инженерии и маркировании признаков сельскохозяйственных животных», Дубровицы, 2001, с. 114-115.
    25. Розенкрантц А.А., Ячменев С.В., Соболев А.С. // Доклады АН СССР, 1990, Т. 312, № 2, с. 493-494.
    26. Рядчиков В.Г., Солодухина Л.И., Соколов Н.В. и др. // Генноинженерные сельскохозяйственные животные, Москва, 1995, с. 73-84.
    27. Савченкова И., Зиновьева Н., Булла Й. и др. // Успехи совр. биологии, 1996, 116 (1), 78-91.
    28. Титова В.А., Зиновьева Н.А., Савченкова И.П. и др. // Доклады РАСХН, 2001, № 6, с. 29-31.
    29. Чистяков Д.А., Захарченко В.И., Мезина М.Н. и др. // Генноинженерные сельскохозяйственные животные, Москва, 1995, с. 127-137.
    30. Шафен Р.А., Зеленина И.А., Семенова М.Л. и др. // Онтогенез, 2000, Т. 31, № 5, с. 388-394.
    31. Эрнст Л.К. // Сельскохозяйственная биология, 1987, № 11, с. 11-17.
    32. Эрнст Л.К. Проблемы селекции и биотехнологии сельскохозяйственных животных // Москва, 1995, 359 с.
    33. Эрнст Л.К. Генная инженерия важный фактор селекции сельскохозяйственных животных // «ДНК-технологии в клеточной инженерии и маркировании признаков сельскохозяйственных животных», Дубровицы, 2001, с. 7-18.
    34. Эрнст Л.К., Георгиев Г.П., Ениколопов Г.Н. // Вестник с.-х. науки, 1987, № 9, с. 68-73.
    35. Эрнст Л.К., Гольдман И.Л., Кадулин С.Г. // Биотехнология, 1993, № 5, с. 2-14.
    36. Эрнст Л.К., Брем Г., Махаев Е.А. // Генноинженерные сельскохозяйственные животные, Москва, 1995а, с.48-53.
    37. Эрнст Л., Гольдман И., Зиновьева Н. и др.// Доклады РАН, 1995б, 345 (4), 555-558.
    38. Эрнст Л.К., Гольдман И.Л., Семенова В.А. и др. // Овцеводство, 1991, № 5, с. 14-16.
    39. Эрнст Л.К., Гольдман И.Л., Семенова В.А. и др. // Доклады ВАСХНИЛ, 1990, № 6.
    40. Эрнст Л.К., Кузин Б.А., Ениколопов Г.Н. и др. // Доклады ВАСХНИЛ, 1989, № 9, с. 45-49.
  • 1384. Рекомбинация и генетический анализ бактериофагов
    Другое Биология

    Генетика бактериофагов связана с генетическими особенностями бактерий-хозяев. Признаки бактериофагов, доступные генетическому анализу это прежде всего скорость и полнота лизиса инфицированных клеток и круг бактерий-хозяев, поражаемых фагами. Широкое распространение в генетическом анализе бактериофагов получили мутанты с условным проявлением. Это мутанты, чувствительные к повышению и понижению температуры, так называемые термочувствительные (ts) и холодочувствительные (cs). Они нормально размножаются и лизируют клетки только при пермиссивной температуре (37°С). В качестве условных используют также мутанты, чувствительные к действию определенных супрессоров, находящихся в геноме бактерий. Это класс так называемых sus (от англ. suppressor sensitive) мутантов. Sus-мутанты можно получить практически по любому гену, кодирующему белок. Генетический анализ бактериофагов основан на совместном заражении клетки генетически различающимися частицами бактериофага. Полные фаговые геномы, проникая в клетку, экспрессируют заложенную в них информацию подобно гомологичным хромосомам, и таким образом становится возможным исследование взаимодействия аллелей и неаллельных генов. Если два температурочувствительных мутанта, проникших в бактериальную клетку, несут изменения, способные взаимодействовать комплементарно, то в непермиссивных условиях клетки лизируются. В ходе репликации геномов возможна рекомбинация, в результате чего появятся рекомбинанты дикого типа. Их можно учесть, высевая фаговое потомство на чувствительные бактерии в условиях непермиссивных для родительских бактериофаговГенетический анализ бактериофагов сопряжен с рядом трудностей, определяемых особенностями их развития в клетке. Репликация геномов Т-четных фагов идет экспоненциально со временем генерации 23 мин. Вплоть до образования количества фаговой ДНК, эквивалентного 50 полным геномам, зрелые частицы фага в клетке не обнаруживаются. Затем из общего фонда синтезируемой ДНК фаговые геномы начинают расходоваться на образование зрелых частиц. При лизисе клетки в ней остается еще столько же ДНК, сколько включилось в головки фагов. В процессе репликации фаговые геномы претерпевают неоднократные циклы спаривания, рекомбинации и репликации. В результате наблюдаемая частота рекомбинации всегда выше ожидаемой. В подобных многократных циклах репликации фаговых геномов генетические события должны быть проанализированы с позиций популяционной генетики. Такой подход разработали Н. Висконти и М. Дельбрюк. При этом они исходили из следующих основных положений: 1) в общем фонде ДНК родительские геномы фагов полностью перемешаны; 2) каждый геном фага аналогичен целой хромосоме; 3) при репликации происходят неоднократные спаривания и рекомбинации. В соответствии с этими допущениями получается, что геномы Т-четных бактериофагов проходят около 5 циклов спаривания и рекомбинации. Однако вызывает сомнение универсальность и надежность исходных допущений. Так, множественность инфекции одной клетки (соотношение родительских частиц) может колебаться до 10 раз. Лизис индивидуальных зараженных клеток обнаруживает неравенство реципрокных классов рекомбинантов. Тем не менее все эти трудности преодолимы, если жестко контролировать соотношение вводимых в клетку геномов фага и время репликации и рекомбинации. При этом можно применять стандартную логику анализа рекомбинации в двух- и трехмаркерных скрещиваниях. На основе этого подхода построены генетические карты бактериофагов ф XI74, ф 80, X, которые представляют собой кольцо, соответствующее кольцевой структуре генома этих бактериофагов. Благодаря знанию генетики двух близких умеренных бактериофагов Я и ф 80 удалось получить их гибриды, совмещающие свойства как X, так и ф 80. Кольцевая карта рекомбинации построена и для Т-четного фага Т4, у которого геном в действительности представлен линейной молекулой ДНК. Этот парадокс объясняется тем, что геномы Т4, упакованные в частицы фага, имеют так называемую концевую избыточность, что допускает кольцевые перестановки, или кольцевые пермутации генов. Дело в том, что в головке Т4 заключено ДНК примерно на 1 % больше, чем соответствует одному геному фага. Дополнительные, концевые, участки фаговой ДНК и составляют физическую основу концевой избыточности. При заражении клетки между молекулами такой ДНК происходят рекомбинации с объединением нескольких геномов в конкатемеры. Длинные молекулы ДНК, состоящие из нескольких геномов, далее реплицируются и рекомбинируют вновь. При созревании бактериофага Т4 работает принцип «наполнения головки». При этом нарезаются молекулы ДНК, в которых наблюдаются концевая избыточность и кольцевые пермутации генов. В молекулах ДНК, полученных из разных источников, встречаются модифицированные основания, например, 5-метилцитозин, 6-метиламинопурин и др. Они не включаются в ДНК при репликации как таковые, а появляются в результате ферментативной модификации синтезируемых молекул, начиная со стадии фрагментов Оказаки. При этом модифицируются основания, занимающие определенное положение в молекуле. Эти реакции осуществляют ферменты, представляющие собой часть единой системы рестрикции модификации. Модификация определенных оснований предохраняет ДНК от разрушения рестриктирующими эндонуклеазами, которые имеют сродство к тем же последовательностям нуклеотидов, что и ферменты модификации. Ферменты модификации защищают ДНК хозяина от действия эндонуклеаз рестрикции. При этом одна и та же молекула может претерпевать разные типы модификации ДНК. Методом центрифугирования в градиенте плотности в лизатах таких клеток можно обнаружить частицы бактериофага, несущие одну из родительских цепей ДНК и совмещающие типы модификации, характерные для штамма К и для штамма В. Структура многих сайтов рестрикции модификации в настоящее время расшифрована. Эти сайты представлены короткими нуклеотидными последовательностями, характерная черта которых их симметричность. Система рестрикции модификации это своеобразный барьер, охраняющий клетку от включения в ее генетический материал чужеродных молекул ДНК. Возникновение мутантов, лишенных способности к рестрикции, открывает дополнительные возможности для изменчивости за счет ассимиляции клеткой чужеродной генетической информации. Кроме того, некоторые рестриктазы (например, Eco RI) могут осуществлять сайтспецифическую рекомбинацию плазмид в клетках Е. coli. Успехи генетического анализа у микроорганизмов, особенно у бактерий и бактериофагов, сыграли революционизирующую роль в методах изучения структуры и функций генетического материала. Организация геномов бактерий и пути, ведущие к их рекомбинации, оказались, на первый взгляд, совершенно отличными от того, к чему привыкли генетики, работавшие с эукариотами. У бактерий были открыты дополнительные (к хромосоме) генетические элементы: плазмиды и эписомы. Некоторые эписомы существуют в свободной форме. Это бактериофаги, вся структура которых приспособлена к переносу генома между клетками. Другие плазмиды способны только к репликации в бактериальной клетке. Между этими крайними формами есть промежуточные варианты. Само существование таких дополнительных элементов генома поставило вопрос о возможности их использования для переноса генетического материала и не только между клетками бактерий.

  • 1385. Рекомендации по подготовке спортивных лошадей к транспортировке автомобильным транспортом
    Другое Биология

    6. Использование лекарственных средств. Применение некотрых лекарственных средств может вызвать неблагоприятный эффект на состояние здоровья лошади. Поэтому рекомендуется всегда заранее предупреждать ветеринарного врача о возможной транспортировке животного. Следует избегать применения лекарственных средств перед транспортировкой, исключая экстренные случаи когда существуют жизненно важные показания к применению медикаментов. Следует отметить, что применение кортикостероидов (например, дексаметазон или преднизолон) может вызвать угнетение иммунного ответа лошади на активизацию бактерий в респираторном тракте. Использование нестероидных противовоспалительных препаратов маскирует лихорадочный ответ на инфекцию и может потенцировать образование язвы желудка. Применение одной профилактической дозы антимикробных средств перед транспортировкой не рекомендуется применять в настоящее время. Применение иммуностимулирующих средств перед транспортировкой не рекомендуется, так как эти препараты могут вызывать незначительное повышение температуры тела и недомогание, что может вызвать затруднения при диагностике транспортной болезни. Существует многолетняя практика использования минерального масла, в качестве слабительного средства, для лошадей перед транспортировкой. Применение седативных средств может потребоваться для лошадей сложного поведения при погрузке или для успокоения в первой половине пути. Следует отметить, что примене-ние ацепромазина не рекомендуется для жеребцов (Catherine W.Kohn).Известно, что применение кортикостероидов, нестероидных противовоспалительных препаратов, седативных средств и многих других лекарственных препаратов вызывает увеличение концентрации этих веществ в крови, что является недопустимым для спортивных лошадей, участвующих в соревнованиях. Информацию о предельно допустимых концентрациях лекарственных веществ, правилах применения разрешенных и запрещенных лекарственных средств для лошадей на спортивных соревнованиях можно найти в Ветеринарном Регламенте Международной Федерации конного спорта.

  • 1386. Рекордисти з швидкості і повільності пересування
    Другое Биология

    Деякі з них здійснюють тривалі безпосадочні перельоти. Так, бурокрила ржанка з ряду куликів гніздується в Азії та з східної частини її відлітає на зимівлю на Гаванські і Маркізькі острови. Щоб потрапити з найближчих місць суші (Алеутські острови) на Гавайські острови, пташці доводиться пролетіти без посадки 3 300 км над морем, а тим, хто зимує на Маркізьких островах, - ще З 000 км. Це рекорд з дальності безпосадочного польоту. Якщо швидкість польоту бурокрилої ржанки становить 90 км/год, то при безпосадочному перельоті їй доводиться без відпочинку летіти понад 36 годин! Яка ж сила у цій невеликій пташці, що важить близько 200 г! Такі маленькі пташки, як рубіногорлі колібрі, що гніздяться на сході Північної Америки, під час перельоту на місце зимівлі перетинають Мексіканську затоку (це близько 1000 км) за 24-26 годин зі швидкістю 40 км/год. Слід зазначити, що всім цим птахам властивий махаючий (активний) політ.

  • 1387. Рекорды растительного мира
    Другое Биология

    Самым высоким деревом на Земле в настоящее время считается секвойя вечнозеленая (Sequoia sempervirens). Самое крупное из достоверно измеренных в прошлом веке деревьев росло в Национальном парке секвой США, имело высоту 120 м и называлось «Отец лесов». Самая высокая из живущих ныне секвой растет в штате Калифорния. Ее высота в 1964 г. составляла 110 м 33 см. Дерево имеет собственное имя «Говард Либби». Близок по размерам к секвойе вечнозеленой и секвойя дендрон, или мамонтово дерево (Sequoiadendron giganteum). Однако эти растения относятся к голосеменным (порядок кипарисовых), а самыми высокими цветковыми растениями на Земле являются австралийские эвкалипты (Eucalyptus, семейство миртовых). Самыми высокими эвкалиптами, существующими сейчас, считаются два дерева, относящиеся к виду эвкалипт царственный (Eucalyptus regnans). Один из них имеет высоту 99,4 м, а другой 98,1 м.

  • 1388. Религия и наука о происхождении человека на Земле
    Другое Биология

    Как считают некоторые исследователи, источник эволюционных идей проистекает из космогоний древних религий. Идеи творения и развития вселенной и жизни идут в них параллельно друг другу, иногда тесно переплетаясь. Но мифический способ мышления мешает выкристаллизовать из них стройные концепции. Первую такую концепцию разработал ученик Фалеса Милетского Анаксимандр. О схеме Анаксимандра стало известно от историка I века до н. э. Диодора Сицилийского. В его изложении, когда молодая Земля осветилась Солнцем, её поверхность сначала затвердела, а потом забродила, возникли гниения, покрытые тонкими оболочками. В этих оболочках и зародились всевозможные породы животных. Человек же будто бы возник из рыбы или похожего на рыбу животного. Несмотря на оригинальность, рассуждения Анаксимандра не подкреплены наблюдениями. Другой античный мыслитель, Ксенофан, уделял наблюдениям больше внимания. Он отождествлял окаменелости, что находил в горах, с отпечатками древних растений и животных: лавра, раковин моллюсков, рыб, тюленей. Из этого он сделал заключение, что суша некогда опускалась в море, неся гибель наземным животным и людям. Она превращалась в грязь, а когда поднималась, отпечатки засыхали. Гераклит, несмотря на пропитанность его метафизики идеей постоянного развития и вечного становления, не создал никаких эволюционных концепций. Хотя некоторые авторы все же относят его к первым эволюционистам.

  • 1389. Репликация ДНК
    Другое Биология

    Синтез ДНК в репликативной вилке проходит следующим образом. Цепи синтезируются в результате присоединения 5-дезоксинуклеотидильных единиц дезоксирибонуклеотидтрифосфатов к 3-гидроксильному концу уже имеющейся цепи (праймер, затравка). За один акт репликации праймерная цепь удлиняется на один нуклеотид, при этом одновременно удаляется один остаток пирофосфата. Цепи синтезируются в направлении 53 вдоль матричной цепи, ориентированной в противоположном, 35, направлении. Синтез Цепей в обратном направлении не происходит никогда, поэтому синтезируемые цепи в каждой репликативной вилке должны расти в противоположных направлениях. Синтез одной цепи(ведущей, лидирующей) происходит непрерывно, а другой (отстающей) импульсами. Такой механизм репликации называется полунепрерывным. Ведущая цепь растёт от 5- к 3-концу в направлении движения репликативной вилки и нуждается только в одном акте инициации. Рост отстающей цепи также идёт от 5- к 3-концу, но в направлении противоположном движению репликативной вилки. Для синтеза отстающей цепи должно произойти несколько актов инициации, в результате чего образуется множество коротких цепей, называемых фрагменты Оказаки в честь открывшего их учёного - Р.Оказаки. Размеры их: 1000-2000 нуклеотидов у прокариот, 100-200 нуклеотидов у эукариот. По мере движения репликативной вилки концы соседних фрагментов Оказаки соединяются с образованием непрерывной отстающей цепи. Механизмы инициации репликации в точке ori и при образовании фрагментов Оказаки в принципе аналогичны. В обоих случаях происходит образование РНК- затравок (длиной 10-12 нуклеотидов), комплиментарных матричной ДНК, в виде продолжения которых синтезируется новая цепь ДНК. В дальнейшем короткие вставки РНК замещаются сегментами ДНК, которые затем объединяются с образованием непрерывных цепей.

  • 1390. Репродуктивное поведение земноводных
    Другое Биология

    В брачную пору зеленая жаба услаждает слух самок звонкой трелью. А призывная сигнализация лягушки-быка напоминает мычание, за что и получила свое названия. Совсем как птица поет удивительно красивая бразильская жемчужная квакша. Чудесный звук, напоминающий звон стеклянного колокольчика, издает самец жабы-повитухи. А брачную песнь самца суринамской пипы можно спутать с громким тиканьем часов. Некоторые свистуны, выходя после заката солнца или в дождливую погоду на берег в поисках пищи, время от времени свистят. Однако в брачный период они используют особую сигнализацию. Она напоминает звуки удара топора дровосека. Среди немногих голосистых тритонов калифорнийские издают три типа звуков от одиночных, коротких до целых серий сигналов. Причем тритоны способны производить эти звуки с открытым и закрытым ртом, в воде и на суше. А некоторые жабы поют в глубине своей норки. Древесные лягушки для этого взбираются на деревья или квакают в кустах. Поющие же самцы жерлянок лежат на поверхности воды, широко раскинув лапы. При этом их тело вибрирует, и на воде расходятся круги, по которым можно увидеть певца.

  • 1391. Репродуктивное поведение насекомых
    Другое Биология

    Классический пример запрограммированной последовательности действий демонстрирует сетчатокрылое насекомое личинка муравьиного льва. Ее инстинктивное пищевое поведение основано на стратегии засады и состоит из ряда последовательных этапов. Вылупившаяся из яичка личинка тотчас ползет на муравьиную дорожку, привлекаемая запахом муравьиной кислоты. Знания об этом сигнальном запахе своей будущей добычи личинка получила по наследству, и передаст далее своим потомкам. На этой дорожке она тщательно выбирает сухой песчаный участок для создания воронкообразной ямы-ловушки. Чтобы ее построить, личинка с удивительной геометрической точность вначале проводит на песке круг, обозначая размер ямы. Потом она одной из передних лапок начинает ее рыть. Нагружая песок на свою плоскую голову, личинка выбрасывает его за пределы круга. Пятясь назад, она постепенно возвращается к исходной позиции. Потом личинка проводит новый круг и выкапывает следующую бороздку. И так далее, пока не дойдет до дна воронки. Перед началом каждого цикла в программе предусмотрена смена «рабочей» ноги. Поэтому следующая бороздка проводится личинкой в противоположном направлении. Если на пути попадаются маленькие камушки, личинка с силой выбрасывает их за пределы воронки. Крупный камень, зачастую в несколько раз тяжелее самого насекомого, личинка ловко взваливает на спину и медленными осторожными движениями вытаскивает наверх. А если камень круглый и постоянно скатывается назад, она бросает бесполезную работу и принимается строить другую яму. Когда ловушка готова, наступает следующий, ответственный для насекомого этап. Личинка зарывается в песок, выставляя наружу только длинные челюсти. Когда какое-либо маленькое насекомое оказывается у края ямы, песок под его ногами осыпается. Это случит сигналом для охотника. Используя голову как катапульту, личинка сбивает неосторожное насекомое, чаще всего муравья, удивительно точными выстрелами песчинок. Добыча скатывается вниз к поджидающему ее «льву». В этом инстинктивном поведенческом комплексе все части процесса идеально подогнаны друг к другу и все прекрасно скоординировано каждое звено вызывает последующее. Разница в индивидуальном поведении различных особей этого вида будет лишь в скорости постройки за счет приобретения навыков по «подгонке» всех стереотипных действий к конкретным условиям, связанным с засоренностью и влажностью песчаной почвы.

  • 1392. Рептилии
    Другое Биология

    Около 320 миллионов лет назад, когда появились первые пресмыкающиеся, на суше господствовали насекомые и другие беспозвоночные животные. Высокий уровень организации рептилий позволял им без труда подавлять беспозвоночных конкурентов, а корма на Земле было в изобилии. Началось бурное развитие и расцвет класса пресмыкающихся. Даже те немногие окаменелости, которые находят учёные, свидетельствуют, какого потрясающего масштаба достигало их господство на Земле. Оно длилось 200 миллионов лет, и в этот период пресмыкающиеся не только освоили ресурсы суши, но и смогли, используя преимущества своей высокой организации, вернуться в воду и существенно потеснить безраздельно царствующих там рыб. Рептилии поднялись и в воздух, где до них летали только насекомые.

  • 1393. Рептилии и амфибии
    Другое Биология

    Животный мир, являясь составной частью природной среды, выступает как неотъемлемое звено в цепи экологических систем, необходимый компонент в процессе круговорота веществ и энергии природы, активно влияющий на функционирование естественных сообществ, структуру и естественное плодородие почв, формирование растительного покрова, биологические свойства воды и качество окружающей природной среды в целом. Вместе с тем животный мир имеет большое экономическое значение как источник получения пищевых продуктов, промышленного, технического, лекарственного сырья и других материальных ценностей и поэтому выступает как природный ресурс для зверобойного, китобойного, рыболовного и других видов промысла. Отдельные виды животных имеют большое культурное, научное, эстетическое, воспитательное, лечебное значение.

  • 1394. Ресничные черви
    Другое Биология

    Ресничные черви, турбеллярии (Turbellaria), класс плоских червей, наиболее примитивная группа двусторонне-симметричных животных. Тело (длина от долей мм до 35 см) веретеновидное, капле-, листо- или лентовидное; покрыто ресничным эпителием (отсюда название). У мелких форм реснички служат для передвижения, крупные формы передвигаются при помощи сокращений мускулатуры. Полость тела отсутствует, промежутки между внутренними органами заполнены паренхимой. Ротовое отверстие помещается на брюшной стороне либо в середине тела, либо на переднем или на заднем его конце и обычно ведёт в мускулистую глотку. У примитивных (бескишечные) пищеварение происходит в особых пищеварительных клетках или в полостях паренхимы; у остальных ресничные червей имеется мешковидный или разветвленный кишечник без заднепроходного отверстия. Органов кровообращения нет. Дыхание кожное. Органы выделения - протонефридии - у примитивных ресничных червей отсутствуют. Нервная система у низших ресничных червей диффузного типа, лежит в толще кожного эпителия; у более высокоорганизованных состоит из головных нервных узлов и 1-6 пар продольных стволов, соединённых поперечными перемычками. Органы чувств: глаза, обонятельные ямки, осязательные щетинки и жгуты, иногда орган равновесия - статоцист. Ресничные черви гермафродиты. У многих ресничные червей часть яичников преобразована в желточники, выделяющие желточные клетки, служащие для питания зародыша. Развитие у большинства ресничные червей прямое, но у части многоветвистокишечных имеется характерная мюллеровская личинка. Для немногих ресничные червей характерно, кроме полового, бесполое размножение путём поперечного деления. Класс ресничных червей включает 11-12 отрядов (около 3000 видов). Распространены в морях и пресных водах во всех широтах; во влажных тропических лесах обитают наземные планарии. Большинство ресничных червей хищники, немногие морские формы паразитируют в иглокожих, моллюсках и других животных. Самые примитивные ресничные черви - бескишечные турбеллярии и ксенотурбеллиды, остальные отряды произошли от близких к ним форм.

  • 1395. Рефлексы и анализаторы
    Другое Биология

    Важным свойством анализаторов является их взаимодействие. Оно осуществляется на нескольких уровнях: специальном, ретикулярном и таламокортикальном. Взаимодействие анализаторов обусловлено переходом возбуждения (иррадиацией) с центростремительных путей одного анализатора на другой. Например, в области четверохолмия возможна иррадиация возбуждения со зрительных путей на слуховые и наоборот. Так, при прослушивании музыки отмечено усиление громкости звуков при ярком освещении, поэтому для лучшего ее восприятия в концертных залах обычно не гасят свет. Также у профессиональных музыкантов различные по тональности звуки часто сопровождаются возникновением цветовых ощущений, что дает им возможность обозначать те или иные звуки с помощью различных цветов. Композиторы Скрябин и Римский-Корсаков могли обозначать цветом ноты, причем сопоставляемый одной и той же ноте цвет у разных людей различался ("ля" имела темно-желтую окраску у одного и темно-зеленую у другого и так далее).

  • 1396. Рефлекторная природа деятельности нервной системы человека
    Другое Биология

    Наблюдение явления «психической секреции» у собаки помогло И. П. Павлову открыть условный рефлекс. Животное, увидев на расстоянии пищу усиленно выделяло слюну еще до подачи пищи. Этот факт истолковывался по-разному. Сущность «психической секреции» объяснил И. П. Павлов. Он установил, что, во-первых, для того чтобы у собаки началось слюноотделение при виде мяса, она должна была раньше хотя бы один раз его увидеть и съесть. И, во-вторых, любой раздражитель (например, вид пищи, звонок, мигание лампочки и т. д.) способен вызвать слюноотделение при условии совпадения времени действия этого раздражителя и времени кормления. Если, например, кормлению постоянно предшествовал стук чашки, в которой находилась пища, то всегда наступил момент, когда на один только стук у собаки начинала выделяться слюна. Реакции, которые вызываются раздражителями, ранее безразличными. И. П. Павлов назвал условно-рефлекторными. Условный рефлекс, отмечал И. П. Павлов, это явление физиологическое, так как оно связано с деятельностью центральной нервной системы, и в то же время психологическое, поскольку представляет собой отражение в мозге конкретных свойств раздражителей из внешнего мира.

  • 1397. Рефлекторная регуляция дыхания
    Другое Биология

    Естественно возникает вопрос: почему дыхательный центр периодически посылает залпы импульсов? С помощью ряда экспериментов было установлено, что если связи дыхательного центра со всеми другими частями головного мозга прерваны, т. е. если перерезаны чувствительные нервы и пути, идущие от высших мозговых центров, то дыхательный центр посылает непрерывный поток импульсов и мышцы, участвующие в дыхании, сократившись, остаются в сокращенном состоянии. Таким образом, дыхательный центр, предоставленный самому себе, вызывает полное сокращение мышц, участвующих в дыхании. Если, однако, либо чувствительные нервы, либо пути, идущие от высших мозговых центров, остались неповрежденными, то дыхательные движения продолжают совершаться нормально. Это означает, что для нормального дыхания необходимо периодическое торможение дыхательного центра, с тем чтобы он прекращал посылку импульсов, вызывающих сокращение мышц. Дальнейшие эксперименты показали, что пневмаксический центр, лежащий в среднем мозгу (фиг.:,268), вместе с дыхательным центром образуют «реверберирующий круговой путь», который и служит основой регулирования частоты дыхания. Кроме того, растяжение стенок альвеол во время вдоха стимулирует находящиеся в этих стенках чувствительные к давлению нервные клетки, и эти клетки посылают в головной мозг импульсы, тормозящие дыхательный центр, что приводит к выдоху.

  • 1398. Рецепторы как главное звено в деятельности сенсорной системы организма
    Другое Биология

    К первичным относят такие рецепторные аппараты, у которых действие адекватного стимула осуществляется непосредственно периферическим отростком сенсорного нейрона, который, таким образом, первично встречается с раздражителем. Этот сенсорный нейрон находится на периферии, а не в центральной нервной системе, и представляет собой преобразованный в ходе эволюции биполярный нейрон, на одном полюсе которого расположен дендрит с ресничкой или дендритными отростками, а на другом центральный отросток аксон, по которому возбуждение передается в соответствующий центр. К вторичным рецепторам относят такие рецепторы, у которых между окончаниями сенсорного нейрона и точкой приложения стимула располагается дополнительная специализированная (рецепти-рующая) клетка ненервного происхождения. Возбуждение, возникающее в рецептирующей клетке, передается через синапс на сенсорный нейрон. Следовательно, сенсорный нейрон возбуждается уже не первично внешним стимулом, а опосредованно (вторично) благодаря воздействию рецептирующих клеток. Последние не имеют периферических и центральных отростков, но восприятие стимула у них осуществляется с помощью жгутикообразных волосков.

  • 1399. Ржавчинные грибы
    Другое Биология

    Как пример разнохозяйственного ржавчинника с полным циклом развития обычно описывают один вид пукцинии (Pиcciпia gramiпis), вызывающий линейную ржавчину злаков. Весной развитие гриба начинается на листьях барбариса, где обнаруживаются небольшие гипертрофированные оранжевые участки ткани, пронизанные межклетным мицелием с гаусториями. Мицелий - этот состоит из одноядерных клеток с гаплоидными ядрами; оранжевый цвет зависит от окрашенных капель масла в его клетках. На пятнах образуются два погруженных в ткань спороношения гриба: на верхней стороне листа.- пикниды, или спермагонии, на нижней стороне эцидии. Пикниды имеют кувшинообразную форму ; в полость от стенок врастают короткие конидиеносцы, отчленяющие мелкиеодноядерные конидии, называемые пикноспорами или спермациями. Наружу из пикниды высовывается пучок гиф и выделяется пахучая сахаристая жидкость, в которую погружены пикноспоры; вызвать новую инфекцию пиктоспоры не могут. Эцидий закладывается в глубине листа в виде клубка гиф из одноядерных клеток. Затем в базальной части его образуется компактная площадочка двухъядерныx цилиндрических, так называемых базальных клеток, кoтoрые отчленяют базипетальные цепочки двухъядерных, материнских клеток спор, каждая из последних делится на верхнюю эцидиоспору с оранжевым содержимым - и нижнюю, маленькую, позднее разрушающуюся промежуточную клетку. Периферические базальные клетки образуют подобным же образом оболочку эцидия перидий, -окружающую его с боков; наружные эцидиоспоры превращаются в клетки, образующие крышку перидия, смыкаются с его боковыми стенками. Эцидии отчасти выдаются над нижней поверхностью листа; перидий эцидия на морфологической вершине его, или крыше, разрывается, и лопасти его в виде зубчиков отворачиваются наружу, так что эцидий получает вид вазочки, наполненной эцидиоспорами. Последние разъединяются вследствие разрушения промежуточных клеток, выпадаютJ вниз из эцидия и разносятся воздушными течениями. Они не могут заражать вновь барбарис, а заражают листовые влагалища и стебли злаков. Там они развивают межклеточный мицелий, состоящий из клеток с дикарионами. Через 5-7 дней на нем под эпидермисом растения-хозяина образуется новое спороношение гриба - собрание овальных одноклеточных двухъядерных уредоспор, сидящих каждая на ножке. Эпидермис растения-хозяина раскрывается, и обнажаются уредоспоры, собранные в заметные невооруженным глазом ржавые полоски, несколько похожие на ржавчину на железе. Окраска зависит от оранжевых капель масла в клетках уредоспор. Разносимые воздушными течениями, уредоспоры прорастают и вызывают новое заражение злаков; такие заражения повторяются 5-6 раз в лето, тк что от первичноно заражения злака одной эцидиоспорой потенциально к концу лета может образоваться 1015 - 1018 уредоспор. К концу лета нa том же мицелии, который давал уредоспоры, образуется новое спороношение телейтоспоры : они также сидят на ножках и состоят каждая из двухдвухъядерных клеток с толстой темно-бурой оболочкой. На злаках скопления телейтоспор заметны в виде черных продолговатых полосок на влагалищах листьев и на стеблях. Телейтоспоры прорастают только следующей весной, после перезимовки. Перед этим ядра дикарионов сливаются; получившиеся диплоидные ядра делятся редукционно, и из каждой телейтоспоры вырастает четырехлеточная фрагмо6азидия% на каждой клетке фрагмобазидии образуется по одной гаплоидной одноядерной базидиоспоре. Базидиоспоры, разносимые воздушными течениями, заражают листья барбариса, образуя в них гаплоидный мицелий, и цикл развития повторяется.

  • 1400. Риниофиты. Бесполое размножение. Спорангии и спорогенез у древних высших растений
    Другое Биология

    Риниофиты (Rhyniophyta), псилофиты (Psilophyta), самая древняя и примитивная вымершая группа (отдел) высших растений. Характеризовались верхушечным расположением спорангиев и равноспоровостью, отсутствием корней и листьев, дихотомическим или дихоподиальным (псевдомоноподиальным) ветвлением, примитивным анатомическим строением. Проводящая система типичная протостела. Протоксилема располагалась в центре ксилемы; метаксилема состояла из трахеид с кольчатыми или (реже) лестничными утолщениями. Опорные ткани отсутствовали. Р. ещё не обладали способностью ко вторичному росту (меристемы у них были только верхушечные). Спорангии примитивные, от шаровидных (диаметром около 1 мм) до продолговато-цилиндрических (длиной до 12 мм), толстостенные. Гаметофиты. достоверно не известны (некоторые авторы считают гаметофитами горизонтальные корневищеподобные органы так называемые ризомоиды). Риниофиты. произрастали на влажных и болотистых местах, а также в прибрежном мелководье. Отдел Риниофиты. включает один класс риниопсиды (Rhyniopsida) с двумя порядками Rhyniales (семества Cooksoniaceae, Rhyniaceae, Hedeiaceae) и Psilophytales (семейство Psilophytaceae). Для порядка Rhyniales характерны дихотомическое ветвление и тонкая, слабо развитая стела. Ксилема из трахеид с кольчатыми утолщениями. Древнейший представитель Риниофит. род куксония, первоначально обнаруженный в Уэльсе в отложениях конца силурийского периода (около 400 млн. лет назад). Наиболее полно изучены нижнедевонские роды риния и отчасти хорнеофит, у которого ризомоид (вверх от него отходили стебли, вниз многочисленные ризоиды) был расчленён на чётковидно расположенные клубневидные сегменты, лишён проводящих тканей и целиком состоял из паренхимных клеток. Полагают, что в процессе эволюции ризомоиды. дали начало корням. У обоих родов стенка спорангия была многослойной, покрытой кутикулой. Хорнеофит характеризуется своеобразной спороносной полостью, которая образует купол, сводообразно покрывающий центральную колонку стерильной ткани, представляющей собой продолжение флоэмы стебля. Этим хорнеофит напоминает современный сфагнум. В семейства риниевых включают также род тениокрада, многие виды которого образовывали подводные заросли в среднем и верхнем девоне. В отдельное семейства хедеевых иногда выделяют нижнедевонские роды хедея и яравия. Нижнедевонский род сциадофит, обычно выделяемый в отдельное семейства сциадофитовых, небольшое растение, состоявшее из розетки простых или слабо дихотомированных тонких стеблей со стелой. Для порядка Psilophytales характерны дихоподиальное ветвление и более сильно развитая стела. У наиболее известного рода псилофит (из нижнедевонских отложений в Восточной Канаде) неравно развитые ветви образовывали ложную главную ось дихоподия с более тонкими боковыми ветвями: стебель был окружен кутинизированной эпидермой с устьицами; поверхность стебля была голая или покрыта шипами длиной 22,5 мм, концы которых дисковидно расширялись, что, вероятно, указывало на их секреторную роль. Спорангии раскрывались продольной трещиной. К псилофиту близки нижнедевонские роды тримерофит и пертика.