Информация по предмету Биология
-
- 1501.
Симбиоз в мире животных
Другое Биология У многих паразитов чередование поколений сочетается со сменой двух или более хозяев, следовательно, одно поколение существует в одном хозяине, а другое в другом. К примеру, ленточный червь, обитающий в кишечнике лисицы, откладывает там крошечные яички. Эти яички вместе с экскрементами лисицы попадают на землю. Как им теперь снова попасть в кишечник какой-нибудь другой лисицы? Процесс возвращения включает в себя стадию промежуточного хозяина или нескольких хозяев: траву, на которую попали яйца ленточного червя, съедает заяц. В его организме яйца превращаются в личинки, которые вбуравливаются в ткани зайца и там переходят в покоящуюся стадию цисты. В дальнейшем, если лисица поймает этого зайца, то цисты попадут в её кишечник, а там превратятся во взрослого ленточного червя, и жизненный цикл начнётся сначала. Многообразие и сложность жизненных циклов паразитов выработались как приспособление для передачи от одной особи хозяина к другой, для распространения.
- 1501.
Симбиоз в мире животных
-
- 1502.
Символ благополучия - мирт
Другое Биология Уход за растением прост и заключается в своевременном поливе, подкормке, опрыскивании и обрезке. С весны до осени мирт регулярно поливают мягкой водой, не допуская пересыхания почвы. Зимой полив ограничивают. Поддержание постоянной влажности почвы является одним из главных условий для нормального развития мирта. Дело в том, что в природных условиях его мощная корневая система уходит глубоко в землю и в засушливый период не пересыхает и добывает воду. Даже в сильную засуху, потеряв часть листвы, миртовые деревья выживают. Поэтому при комнатном содержании мирта важно не допускать пересыхания земляного кома, иначе растение погибнет. Впрочем, нежелательно и застаивание воды в поддоне.
- 1502.
Символ благополучия - мирт
-
- 1503.
Симпатическая и парасимпатическая нервные системы
Другое Биология Фактически все органы тела снабжены вегетативной иннервацией. Даже волокна скелетной мускулатуры, которые не получают прямой иннервации, зависят от вегетативной нервной системы; их кровоснабжение регулируется в соответствии с потребностями. Симпатические преганглионарные нейроны расположены в интермедиолатеральном роге спинного мозга в сегментах с Т1 по L3. Их миелинизированные аксоны выходят через вентральные корешки, образуя синапсы в ганглиях, расположенных как рядом с позвоночным столбом, так и на большем удалении. Из этих ганглиев к тканям идут уже немиелинизированные волокна. В противоположность этому, парасимпатический выход ограничен черепномозговыми нервами III, VII, IX и X пар и крестцовыми корешками S2, S3 и S4. Парасимпатические ганглии расположены вблизи от иннервируемых тканей либо непосредственно в них самих. Следовательно, парасимпатический миелинизированный преганглионарный аксон длинный, тогда как немиелинизированный постганглионарный аксон - короткий. Результаты действия двух систем часто, хотя и не всегда, антагонистичны . Например, возбуждение симпатических нейронов приводит к расширению зрачка, повышению сердечного ритма и ослаблению кишечной моторики. Парасимпатическая активация вызывает противоположные эффекты: сужение зрачка, замедление ритма сердца и усиление моторики кишечника. С другой стороны, секреция желез может быть усилена при активации каждой из этих систем. Обе системы могут вызвать сокращение или расслабление гладких мышц, в зависимости от того, какой медиатор при этом высвобождается, и от того, какого типа рецепторы присутствуют в мышце.
- 1503.
Симпатическая и парасимпатическая нервные системы
-
- 1504.
Синапсы (строение, структура, функции)
Другое Биология В основе современного представления о структуре и функции ЦНС лежит нейронная теория, которая представляет собой частный случай клеточной теории. Однако если клеточная теория была сформулирована еще в первой половине XIX столетия, то нейронная теория, рассматривающая мозг как результат функционального объединения отдельных клеточных элементов -нейронов, получила признание только на рубеже нынешнего века. Большую роль в признании нейронной теории сыграли исследования испанского нейрогистолога Р. Кахала и английского физиолога Ч. Шеррингтона. Окончательные доказательства полной структурной обособленности нервных клеток были получены с помощью электронного микроскопа, высокая разрешающая способность которого позволила установить, что каждая нервная клетка на всем своем протяжении окружена пограничной мембраной, и что между мембранами разных нейронов имеются свободные пространства. Наша нервная система построена из двух типов клеток - нервных и глиальных. Причем число глиальных клеток в 8-9 раз превышает число нервных. Число нервных элементов, будучи очень ограниченным, у примитивных организмов, в процессе эволюционного развития нервной системы достигает многих миллиардов у приматов и человека. При этом количество синаптических контактов между нейронами приближается к астрономической цифре. Сложность организации ЦНС проявляется также в том, что структура и функции нейронов различных отделов головного мозга значительно варьируют. Однако необходимым условием анализа деятельности мозга является выделение фундаментальных принципов, лежащих в основе функционирования нейронов и синапсов. Ведь именно эти соединения нейронов обеспечивают все многообразие процессов, связанных с передачей и обработкой информации.
- 1504.
Синапсы (строение, структура, функции)
-
- 1505.
Синапсы (строение, структура, функции)
Другое Биология
- 1505.
Синапсы (строение, структура, функции)
-
- 1506.
Синдром гибридного дисгенеза у Drosophila melanogaster
Другое Биология Высокий уровень регуляции перемещений P-элемента предполагает высокую чувствительность P-M системы гибридного дисгенеза к действию ДНК-повреждающих факторов и к нарушениям в процессах репарации. Действительно, это подтверждается многочисленными экспериментальными факторами. Показано, что облучение влияет на эффекты транспозиций P-элемента в условиях гибридного дисгенеза, что повышает выход рецессивных и доминантных летальных мутаций (Margulies et al., 1986, 1987). Наблюдаемый при этом эффект синергичного действия облучения и активности транспозона, вероятнее всего, связан с индукцией этими двумя факторами однотипных повреждений ДНК, а именно, двунитевых разрывов. Способность P-элемента вызывать такие серьезные повреждения ДНК, а также активность на премейотических стадиях развития яйцеклеток, обусловливает повышенный интерес к вопросу о функционировании P-M системы гибридного дисгенеза в условиях нарушения репарации. Особое значение могут иметь мутации в генах mei-9+ и mei-41+, контролирующих одновременно мейотическую рекомбинацию и репарацию (Sekelsky et al., 1998). При исследовании системы транспозиций в условиях гибридного дисгенеза у линий с мутациями генов репарации mei-9+, mei-41+ и mus101+ не наблюдали видимого эффекта на уровень рекомбинации у самцов и инсерционный мутагенез (Slatko et al., 1984). Мутации mei-41 и mus101 имели продленный эффект на нерасхождение хромосом и эмбриональную смертность, усиливая их, присутствие мутации mei-41 значительно снижало появление хромосом с P-элементами. Эти эффекты наблюдали только у мух с M-цитотипом, что демонстрирует их обусловленность синдромом гибридного дисгенеза. На основании этих результатов сделан вывод, что дефекты в процессе пострепликативной репарации (мутация mei-41) усиливают те из проявлений гибридного дисгенеза, которым сопутствуют события клеточной гибели и доминантной летальности (Slatko et al., 1984). Однако, ни пострепликативная репарация (мутация mei-41) ни эксцизионная репарация (мутация mei-9) не влияют на уровень рекомбинации у самцов и частоту инсерций. В то же время показано, что в присутствии мутаций mei-9 и mei-41 резко повышается уровень индуцированных гибридным дисгенезом видимых мутаций, в том числе, в локусе singed (Eeken, Sobels, 1981). Важность путей пострепликативной и эксцизионной репарации для репарации повреждений, индуцируемых при транспозициях P-элемента, подтверждается исследованием уровня стерильности в скрещиваниях с использованием линий mei-9 и mei-41 (Margulies, 1990). Показано, что при скрещивании мух, имеющих нарушение системы репарации, с мухами, имеющими активные P-элементы в геноме, наблюдается высокий уровень термочувствительной стерильности, низкая плодовитость и преждевременное старение клеток зародышевой линии самцов (Margulies, 1990).
- 1506.
Синдром гибридного дисгенеза у Drosophila melanogaster
-
- 1507.
Сине-зеленые водоросли
Другое Биология У сине-зеленых водорослей, как и у бактерий, ядерный материал не отграничен мембраной от остального содержимого клетки, внутренний слой клеточной оболочки состоит из муреина и чувствителен к действию фермента лизоцима. Для сине-зеленых водорослей характерна сине-зелёная окраска, но встречается розовая и почти чёрная, что связано с наличием пигментов: хлорофилла а, фикобилинов (голубого фикоциана и красного фикоэритрина) и каротиноидов. Среди сине-зеленых водорослей имеются одноклеточные, колониальные и многоклеточные (нитчатые) организмы, обычно микроскопические, реже образующие шарики, корочки и кустики размером до 10 см. Некоторые нитчатые сине-зеленые водоросли способны передвигаться путём скольжения. Протопласт сине-зеленых водорослей состоит из внешнего окрашенного слоя хроматоплазмы и бесцветной внутренней части центроплазмы. В хроматоплазме находятся ламеллы (пластинки), осуществляющие фотосинтез; они расположены концентрическими слоями вдоль оболочки. Центроплазма содержит ядерное вещество, рибосомы, запасные вещества (гранулы волютина, зёрна цианофицина с липопротеидами) и тельца, состоящие из гликопротеидов; у планктонных видов имеются газовые вакуоли. Хлоропласты и митохондрии у сине-зеленых водорослей отсутствуют. Поперечные перегородки нитчатых сине-зеленых водорослей снабжены плазмодесмами. Некоторые нитчатые сине-зеленые водоросли имеют гетероцисты бесцветные клетки, изолированные от вегетативных клеток «пробками» в плазмодесмах.
- 1507.
Сине-зеленые водоросли
-
- 1508.
Синезелёные водоросли
Другое Биология Протоплазма сине-зеленых водорослей более густая, чем у других групп растений; она неподвижна и очень редко содержит вакуоли, наполненные клеточным соком. Вакуоли появляются только в старых клетках, и возникновение их всегда приводит к гибели клетки. Зато в клетках сине-зеленых водорослей часто встречаются газовые вакуоли (псевдовакуоли). Это полости в протоплазме, наполненные азотом и придающие клетке в проходящем свете микроскопа черно-бурый или почти черный цвет. Встречаются они у некоторых видов почти постоянно, но есть и такие виды, у которых их не обнаруживают. Присутствие или отсутствие их часто считается таксономически важным признаком, но, конечно, еще далеко не все о газовых вакуолях нам известно. Чаще всего встречаются они в клетках у таких видов, которые ведут планктонный образ жизни (представители родов Anabaena, Aphanizomenon, Rivularia, Microcystis и др., рис. 50, 58,1). Нет сомнения в том, что газовые вакуоли у этих водорослей служат своеобразным приспособлением к уменьшению удельного веса, т. е. к улучшению «парения» в толще воды. И все же их наличие совсем необязательно, и даже у таких типичных планктеров, как Microcystis aeruginosa и М. flos-aquae, можно наблюдать (особенно осенью) почти полное исчезновение газовых вакуолей. У некоторых видов они появляются и исчезают внезапно, часто по неизвестным причинам. У ностока сливовидного (Nosloc pruniforme), крупные колонии которого всегда живут на дне водоемов, они появляются в природных условиях весной, вскоре после таяния льда. Обычно зеленовато-коричневые колонии приобретают тогда сероватый, иногда даже молочный оттенок и в течение нескольких дней полностью расплываются. Микроскопирование водоросли в этой стадии показывает, что все клетки ностока набиты газовыми вакуолями и стали черновато-коричневыми, похожими на клетки планктонных анабен. В зависимости от условий газовые вакуоли сохраняются до десяти дней, но в конце концов исчезают; начинается образование слизистого чехла вокруг клеток и их интенсивное деление. Каждая нить или даже кусок нити дает начало новому организму (колонии). Подобную картину можно наблюдать и при прорастании спор эпифитных или планктонных видов глеотрихии. Иногда газовые вакуоли появляются только в некоторых клетках трихома, например в меристемальной зоне, где происходит интенсивное деление клеток н могут возникать гормогонии, выходу которых газовые вакуоли каким-то образом помогают.
- 1508.
Синезелёные водоросли
-
- 1509.
Синергетика – основа высоких социальных технологий
Другое Биология Фундаментальным принципом самоорганизации служит возникновение нового порядка и усложнение систем через флуктуации (случайные отклонения) состояний их элементов и подсистем. Такие флуктуации обычно подавляются во всех динамически стабильных и адаптивных системах за счёт отрицательных обратных связей, обеспечивающих сохранение структуры и близкого к равновесию состояния системы. Но в более сложных открытых системах, благодаря притоку энергии извне и усилению неравновесности, отклонения со временем возрастают, накапливаются, вызывают эффект коллективного поведения элементов и подсистем и, в конце концов, приводят к "расшатыванию" прежнего порядка и через относительно кратковременное хаотическое состояние системы приводят либо к разрушению прежней структуры, либо к возникновению нового порядка. Поскольку флуктуации носят случайный характер, то появление любых новаций в мире (эволюций, революций, катастроф) обусловлено действием суммы случайных факторов. Об этом говорили античные философы Эпикур (341-270 до н. э) и Лукреций Кар (99-45 до н. э);
- 1509.
Синергетика – основа высоких социальных технологий
-
- 1510.
Синергетика и ее основные принципы
Другое Биология Итак, основные принципы синергетики:
- Гомеостатичность (поддержание программы функционирования системы в некоторых рамках, позволяющих ей следовать к своей цели).
- Иерархичность (основным способом структурной иерархии является составная природа вышестоящих уровней по отношению к нижестоящим. То, что для низшего уровня есть структура-порядок, для высшего есть бесструктурный элемент хаоса, строительный материал).
- Нелинейность (нарушение принципа суперпозиции в некотором явлении: результат суммы воздействий на систему не равен сумме результатов этих воздействий. Результаты действующих причин нельзя складывать).
- Незамкнутость (открытость) (невозможность пренебрежения взаимодействием системы со своим окружением).
- Неустойчивость (состояние, траектория или программа системы неустойчивы, если любые сколь угодно малые отклонения от них со временем увеличиваются).
- Динамическая иерархичность (эмерджентность). (Обобщение принципа подчинения на процессы становления. Порождение параметров порядка, когда приходится рассматривать взаимодействие более чем двух уровней, и сам процесс становления есть процесс исчезновения, а затем рождения одного из них в процессе взаимодействия минимум трех иерархических уровней системы).
- Наблюдаемость (даст возможность выстроить некоторую структуру взаимодействия позиций в каждом из подходов к архитектуре и решать задачу сосуществования природы естественной и искусственной как систему уравнений, где синергетический метод будет являться «ситом», кристаллизующим решение поставленной задачи).
- 1510.
Синергетика и ее основные принципы
-
- 1511.
Синергетика как новое научное направление
Другое Биология Трудно или даже невозможно назвать область знания, в которой сегодня не проводились бы исследования под рубрикой синергетики. Для публикаций на тему синергетики характерно то, что в них нередко приводятся авторские трактовки принципов синергетики, причем трактовки довольно разнородные и не всегда достаточно аргументированные. Причиной этого является отсутствие достаточной определенности относительно основных положений синергетики и возникающей отсюда необходимости уточнения статуса излагаемого материала. В настоящей работе предпринимается попытка оценить существующую ситуацию и сделать посильный шаг в направлении развития методологии синергетической концепции и построения в дальнейшем на ее основе определенной технологии. Мы говорим о концепции и технологии. Почему не о теории? Дело в том, что если понимать под теорией ''систему идей в области знания, форму научного знания, дающую целостное представление о закономерностях и существенных связях действительности'', то о построении такой теории в отношении синергетики можно говорить, и она в определенной мере существует и сегодня. Однако областью явлений, из которых возникло современное понимание синергетики, является физика, теоретическая физика квантовых явлений. Именно это происхождение и связь синергетики с точными науками делает, в первую очередь, правомочным называние ее научным направлением. Для естественнонаучной теории вышеприведенное понимание теории является, очевидно, недостаточным. Кроме системы идей, эксперимента, моделирования, анализа и синтеза и широком понимании, необходимы также, в частности: конструктивный формализм, предсказательность, определенность круга явлений действительности, на которые распространяется теория. Говорить же сегодня о создании для синергетики специфического теоретического базиса физикоматематического ранга по меньшей мере преждевременно. Следует учитывать и то, что современному этапу прогресса науки и техники свойственна опора на технологии не в меньшей степени, чем на теории, поскольку почти повсеместно приходится иметь дело с информационными объектами, которые несоизмеримо превосходят возможности непосредственного оперирования ими человеком. В качестве инструментов выступают технологические информационные средства, а не непосредственный невооруженный человеческий ум. «Коварство» существующей ситуации имеет начало в «провокационности» тезиса, провозглашенного Г. Хакеном. Сегодня в условиях когда синергетика приобрела значения движущего начала в научных исследованиях, приходится беспокоиться о том, чтобы не был утерян научный статус синергетики как междисциплинарной области знания. Реальная опасность заключается в том, что, с одной стороны, по ряду причин в общественном мнении может сложиться отношение к синергетике как к общемировоззренческой концепции, граничащей с дилетантизмом. С другой стороны, имеются тенденции отождествлять синергетику с тем или иным узким направлением исследований в физике, теории систем, также в областях прикладных исследований. Наиболее желательной альтернативой представляется выработка структурированного категориального базиса синергетики и других атрибутов, свойственных теоретическому знанию, которые позволили бы дополнить существующие представления более строгим их изложением Далее мы попытаемся показать, что сказанное является не только благим пожеланием.
- 1511.
Синергетика как новое научное направление
-
- 1512.
Синтез белка
Другое Биология
- 1512.
Синтез белка
-
- 1513.
Синтетическая теория эволюции: проблемы и перспективы развития
Другое Биология Несмотря на то, что в синтетической теории эволюции естественный отбор признается в качестве одного из важнейших факторов эволюции, его творческая роль фактически игнорируется. Естественный отбор характеризуется таким важнейшим показателем как его направление. Под направлением отбора понимается путь к той биологической «цели», которая достигается положительным отбором определенного генотипа или генотипов в ущерб другим. Однако при этом возникает вопрос о том, что задает направление отбора. В эволюционной генетике действие естественного отбора рассматривается с позиций повышения или понижения жизнеспособности и плодовитости организмов. Однако этим нельзя объяснить дивергенцию признаков и появление новых видов. Разная степень жизнеспособности может приводить лишь к вытеснению одних форм другими и не объясняет причин увеличения видового разнообразия организмов. Для этого необходимо обращаться к анализу адаптации, дивергенции, структуры экологической ниши и других экологических факторов. А эти вопросы до сих пор мало исследованы в эволюционной экологии.
- 1513.
Синтетическая теория эволюции: проблемы и перспективы развития
-
- 1514.
Система HLA и инфекционные заболевания
Другое Биология Острый гепатит40 15 30--1027,57,5Хронический активный гепатит402015--30205Хронический перстирующий гепатит402510--42,522,510Носители НВs-вируса60208,3--38,3206,6Табл.1 Частота встечаемости антигенов HLA у больных менингококковой и HBs-вирусной инфекцией.
- 1514.
Система HLA и инфекционные заболевания
-
- 1515.
Система виділення, функції нирок
Другое Биология З проксимальної частини звивистого канальця в тканинну рідину відбувається вихід води до рівня осмотичного тиску крові. Дальше збільшення концентрації сечі відбувається в петлі нефрона в силу особливої її будови, яка функціонує за принципом зворотно-протитечійної системи. Низхідне і висхідне коліна доторкаються одне до одного і працюють взаємоузгоджено як єдине ціле. Із низхідного коліна петлі в тканинну рідину виходить вода, а із висхідного коліна активно виводяться іони натрію. Іони натрію, що перейшли в тканинну рідину, підвищують осмотичний тиск і притягують молекули води із низхідного коліна петлі. В результаті цього збільшується концентрація сечі в петлі нефрона. Петля нефрона працює як високоефективний механізм, в якому реабсорбується велика кількість води і натрію. Вихід води із первинної сечі в тканинну рідину в низхідному коліні петлі сприяє реабсорбції натрію, а натрій, в свою чергу, виходу води. У висхідному коліні петлі нефрона натрій всмоктується частково або повністю залежно від потреб організму. Ця ділянка петлі під впливом волокон симпатичної нервової системи здійснює регуляцію натрій-уретичної функції нирок. У звивистих канальцях першого порядку здійснюється так звана облігатна, або обов'язкова, реабсорбція, в результаті якої всмоктується в кров 2/3 первинної сечі. Всмоктування в цій ділянці нефрона є обов'язковим і не регулюється. Реабсорбція, яка здійснюється в петлі нефрона і звивистих канальцях другого порядку, називається факультативною, оскільки інтенсивність її може регулюватись залежно від потреб організму. За добу в нирках із 150… .180 л первинної сечі утворюється 1,5 л вторинної сечі. Втощщна, або кінцева, сеча за своїм складом різко від-рівняється від плазми крові. Канальці нирок виконують також іще і секреторну функцію. Ті речовини, які слабо фільтруються або зовсім не переходять .у первинну сечу (деякі колоїди, органічні кислоти, амінокислоти), виводяться із організму шляхом секреції.
- 1515.
Система виділення, функції нирок
-
- 1516.
Система нитрат европия - алюминат натрия - вода при 20 С
Другое Биология В данной работе приводятся результаты исследования системы нитрат европия -а люминат натрия - вода. Равновесия в системе изучали методом остаточных концентраций [5]. Готовили серию смесей с соотношением Al:Eu от 0,26 до 3. Серия состояла из 8 смесей исходных растворов. Исходный раствор нитрата европия имел концентрацию 9,6410-2 моль/л, алюмината натрия - 5,00610 моль/л. Алюминат натрия для приготовления раствора синтезировали в лаборатории по методике [6]. Объем смеси приняли равным 70 мл. Смеси перемешивали в течение 12 часов, отделяли жидкие фазы от осадков фильтрованием и анализировали на количественное содержание европия [ 7] и алюминия [8].
- 1516.
Система нитрат европия - алюминат натрия - вода при 20 С
-
- 1517.
Система органов дыхания
Другое Биология Повышенное давление. Создается повышенное давление в специальном приспособлении, в котором человек работает под водой. (Каждые 10 м глубины создают давление в 1 атм.) Например, при строительстве мостов, молов, под воду опускают специальный колокол кессон, шахтная труба которого расположена над поверхностью воды и сообщается с декомпрессионной камерой. Вся система герметически закрыта. Чтобы вода не поступала под колокол, в кессоне создается повышенное давление. Если колокол опущен на глубину 100 м, то давление должно быть не менее 11 атм. При этом в крови и тканях работающих людей растворяется большое количество газов, из которых особенно опасным является азот. При быстром переходе от повышенного давления к нормальному происходит выделение газов и в жидкостях и тканях организма образуется большое количество газовых пузырьков, так же как при откупоривании бутылки с газированной водой. Пузырьки кислорода быстро поглощаются тканями. Газообразный азот не используется организмом. Образовавшиеся пузырьки азота закупоривают капилляры, что нарушает кровообращение. При постепенном снижении давления в декомпрессионной камере азот выводится через легкие наружу. Когда человек поднимается из колокола на поверхность, то в надводной шлюзовой (декомпрессионной) камере в течение нескольких часов медленно снижается давление.
- 1517.
Система органов дыхания
-
- 1518.
Систематика и морфология микроорганизмов
Другое Биология Под действием ряда факторов, неблагоприятно действующих на бактериальную клетку (антибиотики, ферменты, антитела и др.), происходит L- трансформация бактерий, приводящая к постоянной или временной утрате клеточной стенки. L- трансформация является не только формой изменчивости, но и приспособления бактерий к неблагоприятным условиям существования. В результате изменения антигенных свойств (утрата О- и К- антигенов), снижения вирулентности и других факторов L- формы приобретают способность длительно находиться (персистировать) в организме хозяина, поддерживая вяло текущий инфекционный процесс. Утрата клеточной стенки делает L- формы нечувствительными к антибиотикам, антителам и различным химиопрепаратам, точкой приложения которых является бактериальная клеточная стенка. Нестабильные L- формы способны реверсировать в классические (исходные) формы бактерий, имеющие клеточную стенку. Имеются также стабильные L- формы бактерий, отсутствие клеточной стенки и неспособность реверстровать которых в классические формы бактерий закреплены генетически. Они по ряду признаков очень напоминают микоплазмы и другие молликуты - бактерии, у которых клеточная стенка отсутствует как таксономический признак. Микроорганизмы, относящиеся к микоплазмам - самые мелкие прокариоты, не имеют клеточной стенки и как все бактериальные бесстеночные структуры имеют сферическую форму.
- 1518.
Систематика и морфология микроорганизмов
-
- 1519.
Систематика растений
Другое Биология Развитие классификации. Медицинские травники продолжали выходить до конца 16 в. (один из лучших составил английский ботаник Джон Герард), но ученых все больше интересовали сами растения, независимо от их лечебных свойств. Уже в 13 в. Альберт Великий описывал структуру растений в своих трудах по естественной истории. В 1583 Андреа Чезальпино классифицировал растения по строению их цветков, плодов и семян. Близкими методами пользовались в начале 18 в. Пьер Маньоль и его ученик Турнефор. Примерно тогда же, в 17 в., профессор Оксфордского университета Роберт Морисон сумел выделить некоторые «естественные» группы растений, в частности семейства зонтичных (Umbelliferae) и крестоцветных (Cruciferae). Великий английский ботаник Джон Рей пошел еще дальше, объединив семейства в группы более высокого ранга. Он обратил внимание на важность для классификации количества семядолей (зародышевых листьев), предложив различать двудольные (с двумя семядолями) и однодольные (с одной семядолей) растения. Эта «естественная» система исходила из признания стойких сочетаний признаков и предполагала детальное их изучение, выгодно отличаясь от чисто искусственных классификаций, основанных на субъективно выбранных чертах сходства.
- 1519.
Систематика растений
-
- 1520.
Систематика современных приматов
Другое Биология Мартышкообразные обезьяны. Они небольшие или среднего размера, передние конечности у них равны задним или немного короче. Первый палец кисти и стопы хорошо противопоставлен остальным. Шерсть покрывает все тело, за исключением лица, обычно окраска яркая. Имеются седалищные мозоли и защечные мешки. Защечные мешки представляют собой особые карманы складки слизистой оболочки в ротовой полости на обеих щеках, куда обезьяны набивают пищу про запас. Помимо седалищных мозолей у них имеется так называемая “половая кожа” участки кожи, которые при овуляции набухают и краснеют, это может служить сигналом для самца о готовности самки к спариванию. Седалищные мозоли в отличие от половой кожи лишены сосудов. Они удобны при спанье или сидении на земле. Все мартышковые передвигаются по земле и ветвям деревьев, среди них есть наземные формы (павианы, гелады), древесно наземные (макаки резусы, и лапундеры) и чисто древесные (все тонкотелые обезьяны, лангур и др.). Они стопоходящие, опираются при ходьбе на стопу и кисти. Хвост никогда не бывает хватательным. У некоторых видов хорошо развит половой диморфизм, то есть самцы крупнее самок. Все они стадные, живут в лесах, саваннах, на скалах. К мартышкообразным обезьянам относятся роды мартышек, гусар, павианов, мандрилов, гелад, мангобаеев, макаков и подсемейства тонкотелых обезьян, роды колобусов, гверец, лангуров. Очень красивая обезьяна лангур хануман считается священной обезьяной в Индии, Шри-Ланке и других странах. Согласно эпосу “Рамаяна”, лангур хануман спас благочестивого Раму и его жену. В Египте к священным животным относится павиан гамадрил, считающийся олицетворением бога Ра бога здоровья, плодородия, щедрости и письма.
- 1520.
Систематика современных приматов