Информация
-
- 10821.
Генерация дидактических материалов по математике
Компьютеры, программирование Наличие отдельного напечатанного варианта при проведении контрольной или самостоятельной работы имеет ряд преимуществ перед отсутствием такового: во-первых, решается проблема списывания каждый учащийся вынужден обрабатывать свои данные (правда, при этом можно в качестве образца использовать работу соседа, но это было и при традиционном проведении контрольной работы); во-вторых, нет необходимости перед началом урока втискивать текст контрольной работы на доску (очень не люблю писать на доске!); в-третьих, ни для кого не является секретом, что зрение большинства учащихся в настоящее время ослаблено, и им приходится подходить к доске или переспрашивать учителя для уточнения текста задания, при указанном подходе проблема снимается. Можно найти и другие достоинства, мною не отмеченные, я думаю... Есть и свои недостатки учителю затем нужно проверить не 2 варианта, а 25-30. Не всякий при нынешней загруженности на это решится. Но при желании число существенно разных вариантов можно сократить до 5-10.
- 10821.
Генерация дидактических материалов по математике
-
- 10822.
Генерация комбинаторных объектов
Компьютеры, программирование И пусть по условиям задачи требуется выбрать подмножество, состоящее из нескольких компонент, обладающее некоторым свойством. Предлагается такой способ решения задачи: мы генерируем ВСЕ возможные подмножества данного множества и для каждого из сгенерированных подмножеств проверяем удовлетворяет ли оно заданному свойству. Альтернативный вариант задачи - подсчитать ВСЕ подмножества данного множества, обладающие заданным свойством.
- 10822.
Генерация комбинаторных объектов
-
- 10823.
Генерация экстремальных подстановок для шифров
Компьютеры, программирование
- 10823.
Генерация экстремальных подстановок для шифров
-
- 10824.
Генетика
Философия Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. каждая яйцеклетка содержит одну Х-хромосому, а другая половина - одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина - Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого тельцем Барра (факультативный гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) - одно. У человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A - бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития (например, синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе, так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.
- 10824.
Генетика
-
- 10825.
Генетика
Биология Главный фактор, детерминирующий любой фенотипический признак, - это генотип. Генотип организма определяется в момент оплодотворения, но степень последующей экспрессии этого генетического потенциала в значительной мере зависит от внешних факторов, воздействующих на организм во время его развития. Так, например, использованный Менделем сорт гороха с длинным стеблем обычно достигал высоты 180 см. Однако для этого ему необходимы были соответствующие условия - освещение, снабжение водой и хорошая почва. При отсутствии оптимальных условий (при наличии лимитирующих факторов) ген высокого стебля не мог в полной мере проявить свое действие. Эффект взаимодействия генотипа и факторов среды продемонстрировал датский генетик Иогансен. В ряде экспериментов на карликовой фасоли он выбирал из каждого поколения самоопылявшихся растений самые тяжелые и самые легкие семена и высаживал их для получения следующего поколения. Повторяя эти эксперименты на протяжении нескольких лет, он обнаружил, что в пределах «тяжелой» или «легкой» селекционной линии семена мало различались по среднему весу, тогда как средний вес семян из разных линий сильно различался. Это позволяет считать, что на фенотипическое проявление признака оказывают влияние как наследственность, так и среда. На основании этих результатов можно определить непрерывную фенотипическую изменчивость как «кумулятивный эффект варьирующих факторов среды, воздействующих на вариабельный генотип». Кроме того, эти результаты показывают, что степень наследуемости данного признака определяется в первую очередь генотипом. Что касается развития таких чисто человеческих качеств, как индивидуальность, темперамент и интеллект, то, судя по имеющимся данным, они зависят как от наследственных, так и от средовых факторов, которые, взаимодействуя в различной степени у разных индивидуумов, влияют на окончательное выражение признака. Именно эти различия в тех и других факторах создают фенотипические различия между индивидуумами. Мы пока еще не располагаем данными, которые твердо указывали бы на то, что влияние каких-то из этих факторов всегда преобладает, однако среда никогда не может вывести фенотип за пределы, детерминированные генотипом.
- 10825.
Генетика
-
- 10826.
Генетика в медицине
Медицина, физкультура, здравоохранение Применение методов генетической инженерии позволило точно выяснить характер перестроек в структуре мутантных генов для целого ряда наследственных болезней, в т.ч. талассемий (a,b, d, g), миопатий Дюшенна и Беккера, гемофилии А и В, фенилкетонурии; исследования в этой области осуществляются так интенсивно, что любые данные быстро становятся устаревшими. В области генетики мультифакториальных заболеваний, к которым относятся ишемическая болезнь сердца, психозы, сахарный диабет, язвенная болезнь, большинство изолированных пороков развития, по-видимому, некоторые инфекционные заболевания (туберкулез, лепра, ревматизм), интенсивно развиваются теоретические исследования в области особого направления медицинской генетики - генетической эпидемиологии. Не менее важным в генетике мультифакториальных заболеваний является также выяснение значимости факторов окружающей среды, в том числе социальных, а также их взаимодействия с генетическими факторами для развития широко распространенных заболеваний.
- 10826.
Генетика в медицине
-
- 10827.
Генетика и биометрия
Биология К комплементарным, или дополнительно действующим, генам относятся такие неаллельные гены, которые при совместном проявлении обуславливают развитие нового признака. На примере наследования окраски цветков у душистого горошка можно понять сущность комплементарного действия генов. При скрещивании двух рас этого растения с белыми цветками у гибридов F1 цветки оказались пурпурными. При самоопылении растений из F1 в F2 наблюдалось расщепление растений по окраске цветков в отношении близком к 9:7. пурпурные цветки были обнаружены у 9/16 растений, белые у 7/16. Объяснение такого результата состоит в том, что каждый из доминантных генов не может вызвать появление окраски, определяемой пигментом антоцианом. У душистого горошка есть ген А, обусловливающий синтез бесцветного предшественника пигмента пропигмента. Ген В определяет синтез фермента, под действием которого из пропигмента образуется пигмент. Цветки душистого горошка с генотипом ааВВ и ААbb имеют белый цвет: в первом случае есть фермент, но нет пропигмента, во втором -есть пропигмент, но нет фермента, переводящего пропиг-мент в пигмент. Проведем скрещивание двух растений ду шистого горошка с белыми цветками: У дигетерозиготных растений есть и пропигмент (А), и фермент (В), участвующие в образовании пурпурного пигмента. Формирование такого, казалось бы, элементарного признака, как окраска цветков, зависит от взаимодействия по крайней мере двух неаллельных генов, продукты которых взаимно дополняют друг друга. Такая форма взаимодействия генов разных аллельных пар носит название комплементарности взаимодополнения.
- 10827.
Генетика и биометрия
-
- 10828.
Генетика и генетическая информция
Биология Её молекулы имеют огромную по молекулярным масштабам длинну и состоят из двух нитей, сплетённых между собой в двойную спираль. Каждую из нитей можно сравнить с длинной нити бус. С нитками бус мы сравнивали и белки. У белков "бусинами" являются аминокислоты 20 различных типов. У ДНК - всего 4 типа "бусин", и зовуться они нуклиотидами. "Бусины" двух нитей двойной спирали ДНК связаны между собой и строго друг другу соотвецтвуют. Чтобы наглядно представить себе это, вообразим две рядом лежащие нитки бус. Напротив каждой красной бусины в одной цепи лежит, допустим, синяя бусина в другой. Напротив каждой зелёной - жёлтая. Точно также в ДНК напротив нуклеотида аденина находится тимин, напротив цитозина - гуанин.
- 10828.
Генетика и генетическая информция
-
- 10829.
Генетика и естественный отбор
Биология В этом процессе естественного отбора мы видим не средство, за счет которого происходила эволюция, а великую мудрость и милость Бога. Вспомним, что климат, в котором мы живем на Земле в настоящее время, совсем не тот, который преобладал во времена сотворения Земли. Потоп времен Ноя вызвал громадные изменения. В своей великой мудрости Бог сотворил людей, и большинство животных, наделенными достаточной генетической приспособляемостью для выживания в условиях этих крупных изменений. Некоторые из них, например, динозавры, не смогли приспособиться, и поэтому вымерли. Мы наблюдаем в наши дни такие существа, как тропические рыбы и полярные животные, места обитания которых ограничены рамками узких климатических регионов. Несомненно, что естественный отбор обеспечил им возможность выживания из первоначальных сотворенных Богом популяций.
- 10829.
Генетика и естественный отбор
-
- 10830.
Генетика и проблемы человека
Биология Большинство организмов хранят генетическую информацию в ДНК - линейном полимере, состоящем из 4ех различных мономерных единиц - дезоксирибонуклеотидами, которые сцеплены друг с другом в цепь фосфодиэфирными связями. Как было доказано Уотсоном и Криком, Типичная молекула ДНК состоит из 2ух плинуклеотидных цепей, каждая из которых содержит от нескольких тысяч до нескольких миллионов молекул. Каждый нуклеотид в одной цепи специфически связан водородной связью с нуклеотидом другой цепи. Только 2 типа спаривания нуклеотидов найдены в ДНК: дезоксиаденозинмонофосфат с тимидинмонофосфатом (А-Т пара) и дезоксигуанидинмонофосфат с дезоксицитидинмонофосфатом (Г-Ц пара). Таким образом последовательность нуклеотидов одной цепи точно определяет последовательность в другой, и обе цепи являются комплиментарными одна другой. Последовательность четырех нуклеотидов вдоль полинуклеотидной цепи варьирует среди ДНК неродственных организмов и является молекулярной базой их генетического расхождения. Поскольку большинство наследственных характеристик стабильно передается от родителей к потомству, последовательность нуклеотидов в ДНК должна точно копироваться при репродукции организма. Это имеет место в обеих цепях. Последовательность нуклеотидов и отсюда генетическая информация консервируется в ходе процесса репликации. Так как каждый нуклеотид в дочерних цепях спарен специфически с комплиментарным нуклеотидом в родительских или матричных цепях до того, как произойдет процесс полимеризации. ДНК высших организмов регулярно упаковано в структуру, называемую хромосомами, состоящих из нуклеопротеиновых элементов (нуклеосом). Хромосомы отделены от всех других клеточных компонентов ядерной мембраной. Каждый из нуклеосомных элементов состоит из четырех, иногда пяти белковых субъединиц, называемых гистонами, которые образуют стержневую структуру, вокруг которого "наматывается" примерно 140 пар нуклеотидов геномной ДНК. Структура гистонов характеризуется высокой консервативностью в царстве эукариотов. Двуспиральная модель ДНК определяет способ, путем которого гены могут быть реплицированы для передачи потомства. Процесс репликации является сложным, но концептуально простым. Две нити ДНК разделяются, и каждая копируется серией ферментов, которые вставляют комплиментарные основания напротив каждого основания на исходной (родительской) цепи ДНК. Таким образом две идентичные двойные спирали образуются из одной в этом состоит процесс репликации. ДНК "делает" РНК, этот процесс называется транскрипцией, а РНК "делает" белок, этот процесс называется трансляцией. Последовательность основания в специфическом гене ультимативно диктует последовательность аминокислот в специфическом белке это коллинеарность между молекулой ДНК и белком достигается посредством генетического кода. Четыре типа оснований ДНК собранные в группы из трех образует триплет, каждый из которых образует кодовое слово, или кодон, который определяет включение одной аминокислоты в структуру кодируемого белка, таким способом определяется включение каждой из 20 аминокислот, которые встречаются в белках. 64 различных триплета существуют для 20 аминокислот, что определяет свойства генетического кода. Таким образом большинство аминокислот определяется более чем одним кодоном, но каждый кодон полностью специфичен.
- 10830.
Генетика и проблемы человека
-
- 10831.
Генетика и человек
Биология Биологи различают наследственные и ненаследственные изменения организма. Наследственная изменчивость называется также модификационной. Она проявляется под прямым действием внешней среды. Облик организма определяется множеством условий, в том числе температурой окружающей среды, характером питания, избытком или недостатком солнечного света и т.д. например, под действием солнечных лучей кожа человека приобретает загар, становится темнее (потомству этот смуглый цвет кожи не передаётся). Однако кожа европейца никогда не сможет стать столь же тёмной, как кожа африканца. Модификационная изменчивость имеет свои пределы, которые называются нормой реакции. У различных организмов норма реакции может отличаться, она определяется генотипом. К наследственной изменчивости относятся комбинаторная изменчивость. Она связана с образованием новых сочетаний генов в процессе кроссинговера. Сами гены при этом типе изменчивости не изменяются. Но наибольшее значение для эволюции имеет мутации генов и хромосом - возникают случайно и достаточно редко. Чаще всего мутации неблагоприятны для организации и могут даже повлечь его гибель (летальные мутации). Некоторые вполне здоровые люди могут быть носителями летальных или полулетальных мутаций, которые проявляются у их потомков. (Наиболее известный пример - гемофилия, о чём сказано выше). Поэтому для предупреждения наследственных заболеваний у будущих детей молодые супружеские пары нередко проходят специальное генетическое обследование. По наследству чаще всего передают мутации, которые возникают в половых клетках. Однако и в соматических клетках тоже возможны мутации. Массовые мутации возникают под влиянием радиации, а также под действием различных вредных и ядовитых веществ (в том числе алкоголя, никотина, наркотиков). Мутации в соматических клетках часто вызывают раковые заболевания (именно поэтому курильщики гораздо чаще заболевают раком). Мутации в половых клетках приводят к появлению потомства, частично нежизнеспособного, а частично - страдающего от врождённых генетических дефектов. Чрезвычайно редкими исключениями являются полезные мутации. Однако именно полезные мутации предоставляют их носителям преимущества в ходе естественного отбора и создают материал для эволюции.
- 10831.
Генетика и человек
-
- 10832.
Генетика и человек
Биология
- 10832.
Генетика и человек
-
- 10833.
Генетика и эволюционное учение
Биология В феврале 2001 года два наиболее авторитетных научных журнала в мире "Nature" и "Science" опубликовали отчеты двух научных групп, расшифровавших геном человека. В журнале "Nature" от 12 февраля 2001 года приведены подробные данные о структуре генома человека, полученные международным консорциумом под руководством Френсиса Коллинза, в котором работали ученые Англии, Германии, Китая, США, Франции и Японии в рамках международной программы "Геном человека" с привлечением государственного финансирования. Эта группа выделила в ДНК особые маркеры, легко распознаваемые участки, и по ним определила нуклеотидные последовательности генома человека. В журнале "Science" от 16 февраля 2001 года ученые частной фирмы "Celera Genomics" под руководством Крэга Вентера опубликовали результаты расшифровки генома человека, полученные с применением другой стратегии исследований, в основе которой лежит анализ последовательностей нуклеотидных оснований в коротких участках ДНК человека. Таким образом, при расшифровке генома человека были использованы два научных подхода, каждый из которых имеет свои преимущества и недостатки. Важно отметить, что получены близко совпадающие результаты, которые взаимно дополняют друг друга и свидетельствуют об их достоверности. Вопрос о точности изучения последовательностей ДНК особенно важен в отношении генома человека. В нашем геноме существует большое число повторов нуклеотидов. Кроме них в хромосомах есть теломеры, центромеры и зоны гетерохроматина, где секвенирование затруднено и они пока исключены из исследований. Предварительный анализ опубликованных материалов по расшифровке генома человека позволяет отметить несколько особенностей. Количество генов у человека оказалось существенно меньше, чем предполагали ученые несколько лет назад, называя величины 80-100 000 генов. По данным, опубликованным в журнале "Nature", у человека около 32 000 генов, тогда как в геноме мухи дрозофил их 13 000, круглого червя нематоды - 19100, а растения арабидопсиса - 25 000 генов. При сопоставлении этих величин следует иметь в виду, что расчетное число генов человека получено методами компьютерной геномики и не у всех генов выявлены конечные продукты. Кроме того, в геноме человека действует принцип "один ген - много белков", то есть многие гены кодируют семейство родственных, но существенно различающихся белков. Следует также иметь в виду процесс посттрансляционной модификации белков за счет различных химических групп - ацетильных, гликозильных, метильных, фосфатных и других. Поскольку таких групп в молекуле белка много, то и разнообразие может быть практически безграничным. Другой особенностью генома человека является наличие в нем генов различных вирусов и бактерий, которые постепенно накапливались в процессе многомиллионной эволюции человека. По образному выражению академика Л.Л. Киселева, "...геном человека представляет собой молекулярное кладбище, на котором покоятся вирусные и бактериальные гены, большинство из них молчит и не функционирует".
- 10833.
Генетика и эволюционное учение
-
- 10834.
Генетика и эволюция
Биология Время их образования ранние периоды геологической истории, такие как кембрий и ордовик, или же кризисные эпохи после массовых вымираний, применительно к которым об устойчивых экосистемах с высокой плотностью упаковки ниш вообще нельзя говорить. Природа так придумала, что большинство аминокислот кодируется несколькими кодонами. Имеется избыток и вариативность информации, чтобы сделать то, что нужно наверняка. Установлено, что молекул ДНК в ядрах клеток столько, что их хватило бы на образование в 10 раз большего числа генов. Это подобно вырождению в квантовых физических состояниях, когда разные волновые функции соответствуют одному и тому же значению собственной энергии. Такой код в молекулярной биологии также называется вырожденным в том смысле, что несколько разных триплетов передают один и тот же смысл, т.е. являются по существу синонимами. Было также установлено, что сама структура генетического кода для всего живого одинакова.
- 10834.
Генетика и эволюция
-
- 10835.
Генетика и эволюция. Законы генетики Менделя
Философия Г. Мендель не был пионером в области изучения результатов скрещивания растений. Такие эксперименты проводились и до него, с той лишь разницей, что скрещивались растения разных видов. Потомки подобного скрещивания (поколение F 1) были стерильны, и, следовательно, оплодотворения и развития гибридов второго поколения (при описании селекционных экспериментов второе поколение обозначается F2) не происходило. Другой особенностью доменделевских работ было то, что большинство признаков, исследуемых в разных экспериментах по скрещиванию, были сложны как по типу наследования, так и с точки зрения их фенотипического выражения. Гениальность (или удача?) Менделя заключалась в том, что в своих экспериментах он не повторил ошибок предшественников. Как писала английская исследовательница Ш. Ауэрбах, «успех работы Менделя по сравнению с исследованиями его предшественников объясняется тем, что он обладал двумя существенными качествами, необходимыми для ученого: способностью задавать природе нужный вопрос и способностью правильно истолковывать ответ природы». Во-первых, в качестве экспериментальных растений Мендель использовал разные сорта декоративного гороха внутри одного рода Pisum. Поэтому растения, развившиеся в результате подобного скрещивания, были способны к воспроизводству. Во -вторых, в качестве экспериментальных признаков Мендель выбрал простые качественные признаки типа «или /или» (например, кожура горошины может быть либо гладкой, либо сморщенной), которые, как потом выяснилось, контролируются одним геном. В-третьих, подлинная удача (или гениальное предвидение?) Менделя заключалось в том, что выбранные им признаки контролировались генами, содержавшими истинно доминантные аллели. И, наконец, интуиция подсказала Менделю, что все категории семян всех гибридных поколений следует точно, вплоть до последней горошины, пересчитывать, не ограничиваясь общими утверждениями, суммирующими только наиболее характерные результаты (скажем, такихто семян больше, чем таких-то).
- 10835.
Генетика и эволюция. Законы генетики Менделя
-
- 10836.
Генетика и эволюция. Основные аксиомы биологии
Биология В феврале 2001 года два наиболее авторитетных научных журнала в мире "Nature" и "Science" опубликовали отчеты двух научных групп, расшифровавших геном человека. В журнале "Nature" от 12 февраля 2001 года приведены подробные данные о структуре генома человека, полученные международным консорциумом под руководством Френсиса Коллинза, в котором работали ученые Англии, Германии, Китая, США, Франции и Японии в рамках международной программы "Геном человека" с привлечением государственного финансирования. Эта группа выделила в ДНК особые маркеры, легко распознаваемые участки, и по ним определила нуклеотидные последовательности генома человека. В журнале "Science" от 16 февраля 2001 года ученые частной фирмы "Celera Genomics" под руководством Крэга Вентера опубликовали результаты расшифровки генома человека, полученные с применением другой стратегии исследований, в основе которой лежит анализ последовательностей нуклеотидных оснований в коротких участках ДНК человека. Таким образом, при расшифровке генома человека были использованы два научных подхода, каждый из которых имеет свои преимущества и недостатки. Важно отметить, что получены близко совпадающие результаты, которые взаимно дополняют друг друга и свидетельствуют об их достоверности. Вопрос о точности изучения последовательностей ДНК особенно важен в отношении генома человека. В нашем геноме существует большое число повторов нуклеотидов. Кроме них в хромосомах есть теломеры, центромеры и зоны гетерохроматина, где секвенирование затруднено и они пока исключены из исследований. Предварительный анализ опубликованных материалов по расшифровке генома человека позволяет отметить несколько особенностей. Количество генов у человека оказалось существенно меньше, чем предполагали ученые несколько лет назад, называя величины 80-100 000 генов. По данным, опубликованным в журнале "Nature", у человека около 32 000 генов, тогда как в геноме мухи дрозофил их 13 000, круглого червя нематоды - 19100, а растения арабидопсиса - 25 000 генов. При сопоставлении этих величин следует иметь в виду, что расчетное число генов человека получено методами компьютерной геномики и не у всех генов выявлены конечные продукты. Кроме того, в геноме человека действует принцип "один ген - много белков", то есть многие гены кодируют семейство родственных, но существенно различающихся белков. Следует также иметь в виду процесс посттрансляционной модификации белков за счет различных химических групп - ацетильных, гликозильных, метильных, фосфатных и других. Поскольку таких групп в молекуле белка много, то и разнообразие может быть практически безграничным. Другой особенностью генома человека является наличие в нем генов различных вирусов и бактерий, которые постепенно накапливались в процессе многомиллионной эволюции человека. По образному выражению академика Л.Л. Киселева, "...геном человека представляет собой молекулярное кладбище, на котором покоятся вирусные и бактериальные гены, большинство из них молчит и не функционирует".
- 10836.
Генетика и эволюция. Основные аксиомы биологии
-
- 10837.
Генетика истории народов на территории России
История Замечено, метод “молекулярных часов”, позволяющий установить степень родства разных видов по различиям в их ДНК, очень похож на метод глоттохронологии, используемый при установлении родства разных языков. За 1000 лет в так называемом базовом словаре (он включает те слова, которые есть в любом языке, “дом”, “земля”, “небо”, названия частей тела и т.д.) сохраняется 86% слов, т.е. каждый из языков двух народов, разделившихся 1000 лет назад, имеет 86% общих слов с предковым языком. Следовательно, друг с другом эти языки имеют 74% (86% от 86%) общих слов. Даже студент способен просчитать, когда могли разделиться языки, в которых ныне по близкому произношению 5% (и т.д.) общих слов. Правда, есть и иные лингвистические версии, где подчеркивается изначальность диалектов у людей (в частности, расхождение языков славян от Дуная в 3 тыс. до н.э. О.Н.Трубачев доказывал изначальностью уже в ту пору диалектов). Это не очень согласуется со сравнительно одинаковыми возможностями человеческой гортани, близостью знакового богатства в последние десятки тысячелетий у людей в различных уголках планеты.
- 10837.
Генетика истории народов на территории России
-
- 10838.
Генетика микроорганизмов
Биология У грамположительных бактерий, например у Lactobacillus, в муреиновую сетку встроены другие вещества, главным образом полисахариды и белки. Так вокруг клетки создаётся сравнительно толстая и жёсткая упаковка. У грамотрицательных бактерий скажем у Escherichia coli или у Azotobacter, клеточная стенка гораздо тоньше, но устроена она гораздо сложнее. Муреиновый слой этих бактерий покрыт мягким и гладким слоем липидов. Это защищает их от лизоцима. Лизоцим обнаружен в слюне, в слезах и других биологических жидкостях, а также в белке куриного яйца. Он катализирует гидролиз определённых связей между остатками углеводов и таким образом расщепляет полисахаридную основу муреина. Клеточная стенка разрывается, и, если клетка находиться в гипотоническом растворе, происходит её лизис (клетка осмотически набухает и лопается). Липидный слой придаёт клетке устойчивость к пенициллину. Этот антибиотик препятствует образованию сшивок в клеточной стенке грамположительных бактерий, что делает растущие клетки более чувствительными к осмотическому шоку.
- 10838.
Генетика микроорганизмов
-
- 10839.
Генетика пола, наследование, сцепленное с полом
Биология Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. каждая яйцеклетка содержит одну Х-хромосому, а другая половина - одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина - Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого тельцем Барра (факультативный гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) - одно. У человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A - бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития (например, синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе, так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.
- 10839.
Генетика пола, наследование, сцепленное с полом
-
- 10840.
Генетика популяций
Биология Однако не все рецессивные аллели неблагоприятны для популяции. Например, у человека из всех групп крови чаще всего встречается группа О, соответствующая гомозиготности по рецессивному аллелю. Другим примером служит серповидноклеточная анемия. Это наследственное заболевание крови, широко распространенное в ряде областей Африки и Индии, в некоторых средиземноморских странах и у негритянского населения Северной Америки. Индивидуумы, гомозиготные по соответствующему рецессивному аллелю, обычно умирают, не достигнув половой зрелости и элиминируя таким образом из популяции по два рецессивных аллеля. Что касается гетерозигот, то они не гибнут. Установлено, что во многих частях земного шара частота аллеля серповидноклеточности остается относительно стабильной. У некоторых Африканских племен частота гетерозиготного фенотипа достигает 40%. Раньше думали, что этот уровень поддерживается за счет появления новых мутантов. Однако в результате дальнейших исследований выяснилось, что дело обстоит иначе: оказалось, что во многих частях Африки, где среди факторов, угрожающих здоровью и жизни, важное место занимает малярия, люди, несущие аллель серповидноклеточности, обладают повышенной резистентностью к этой болезни. В малярийных районах Центральной Америки это селективное преимущество гетерозиготного генотипа поддерживает частоту аллеля серповидноклеточности среди населения на уровне 10-20%. У североамериканских негров, которые уже 200-300 лет не испытывают на себе селективного эффекта малярии, частота аллеля серповидноклеточности упала до 5%. Это снижение можно частично отнести на счет обмена генами в результате браков между представителями черной и белой расы, однако важным фактором служит отсутствие в Северной Америке малярии, устраняющее селективное давление в пользу гетерозигот; в результате рецессивный аллель медленно элиминируется из популяции.
- 10840.
Генетика популяций