Информация
-
- 10881.
Генная инженерия
Разное Генетическая карта хромосомы - схема взаимного расположения генов, находящихся в одной группе сцепления. Для сотавления генетических карт хромосом необходимо выявление множество мутантных генов и проведения многочисленных скрещиваний. Расстояние между генами на генетической карте хромосом определяют по чистоте кроссинговера между ними. Единицей расстояния генетической карте хромосом мейотически делящихся клеток является морганида, соотвеьсвующая одному проценту кроссинговера. Для построения генетической карты хромосомы эукариот (наиболее подробная гентические карты сотавленны для дрозофилы, у которой изучено более тысячи мутантных генов, а также для кукурузы, имеющей в десяти группых сцепления с выше четырехсот генов) используют меотический и митотический кроссинговер. Сравнение генетических карт хромосом, построенных разными методами у одного и того же вида, выявляет одинаковый порядок расположение генов, хотя расстоуние между конкретными генами на мейотических и митотических генетических картах хромосом могут различаться. В норме генетические карты хромосом у эукариот линейные, однако, например, при построении генетических карт хромосом у гетерозигот по транслакации получается генетическая карта хромосом в виде креста. Это указывает на то, что форма карт отражает характер конъюгации хромосом. У прокариот и вирусов генетические карты хромосом также строят с помощью рекомбинации. При картировании генов у бактерий с помощью конъюгации получается кольцевая генетическая карта хромосомы. Значение генетических карт позволяет планировать работу по получению организмов с определенными сочетаниями признаков, что используется в генетических экспериментах селекционной практике. Сравнение генетических карт хромосом разных видов способствует эволюциоонному процессу. На основе же генетических карт проводят генетический анализ.
- 10881.
Генная инженерия
-
- 10882.
Генная инженерия: возможности и перспективы
Разное В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объёму купли-продажи акций на рынках ценных бумаг). Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных, и тратят на это десятки миллионов долларов в год, они же мобилизировали выпуск химических веществ для быта. Добавок к продукции строительной индустрии и так далее. Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии,и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок. Очевидно поэтому любой прогресс биотехнологий растений будет зависеть от разработки генетических систем и инструментов, которые позволят более эффективно управлять трансгенами. Для чистого вырезания трансгенного ДНК в растительный геном, всё больше применяют заимствованные из микробной генетики системы гомологичной рекомбинации, такие как системы Cre-lox и Flp-frt. Будущее, очевидно, будет за управляемым переносом генов от сорта к сорту, основанного на применении предварительно подготовленного растительного материала, который уже содержит в нужных хромосомах участки гомологии, необходимого для гомологичного встраивания трангена. Помимо интегративных систем экспрессии, будут опробованы автономно реплицирующиеся векторы.осбый интерес представляют
- 10882.
Генная инженерия: возможности и перспективы