Геодезия и Геология
-
- 321.
Добыча драгоценных металлов России
Информация пополнение в коллекции 12.01.2009 Наиболее богатая трубка Аргайл была открыта в конце 1979 г. В настоящее время только из этого месторождения ежегодно извлекают 25 млн. каратов. Австралия уверенно заняла второе место по добыче алмазов после ЮАР на мировом сырьевом рынке, устойчиво получая каждый год 30-40 млн. каратов.
Спрос на алмазы настолько велик, что ведущие горнорудные компании и государственные предприятия мира продолжают поиск новых месторождений. Россия существенно увеличила свой алмазный потенциал благодаря открытию на побережье Белого моря новой провинции. Есть сведения о находках в Приморье. Несколько десятков кимберлитовых трубок с промышленными алмазами в ближайшие годы ещё больше упрочат наше положение в Международном алмазном синдикате, захватившем монополию по сбыту природных алмазов, добываемых во многих странах мира (ЮАР, Намибия, Заир, и др.). Ниже приводится таблица объёмов производства алмазов крупнейшими алмазодобывающими странами:
- 321.
Добыча драгоценных металлов России
-
- 322.
Добыча золота
Дипломная работа пополнение в коллекции 23.09.2011 Среднее содержание золота в литосфере составляет 4,3 на 10-7% по массе. В магме и магматических породах золото рассеяно, но из горячих вод в земной коре образуются гидротермальные месторождения золота, имеющие важное промышленное значение (кварцевые золотоносные жилы и др.). В рудах золото в основном находится в свободном (самородном) состоянии и лишь очень редко образует минералы с селеном, теллуром, сурьмой, висмутом. Пирит и др. сульфиды часто содержат примесь золота, которое извлекают при переработке медных, полиметаллических и др. руд. В ничтожно малых концентрациях золото присутствует во многих горных породах, слагающих земную кору. В абсолютном большинстве эти концентрации настолько малы, что о промышленной добыче золота не может быть и речи, так как издержки на нее были бы очень велики. Считается, что на 1 т горных пород земной коры приходится 5 мг золота, но вместе с тем отдельные породы могут отличаться и более высоким его содержанием. Например, в гранитном массиве американского штата Невада установлено содержание золота, превышающее 1,1 г/тонну, в некоторых диабазах оно достигает 0,76 г./тонну, в базальтах - 0,26 г./т. Чаще всего золото концентрируется в кварцевых жилах. Именно этими жилами и представлено наибольшее число месторождений. Но даже в промышленных месторождениях концентрация золота по сравнению с промышленными концентрациями других полезных ископаемых весьма мала. Поэтому золото - один из самых трудоемких по добыче металлов. В этом отношении он уступает, например платине, промышленные концентрации еще меньше. Находки золота в метеоритах являются неопровержимым доказательством того, что золото распространено не только на Земле, но и на других космических телах. Об этом, кстати, свидетельствуют спектральные линии золота, обнаруженные на Солнце. Весьма много золота в морях и океанах. Золото попадает в воды морей самыми различными путями. Прежде всего, этому способствуют реки, которые на своем пути размывают золотосодержащие породы, растворяют некоторое количество освободившегося золота и несут в своих струях мельчайшие золотые пылинки. Так, согласно расчетам, река Амур ежегодно выбрасывает в Татарский пролив более 8 т золота, что превышает годовую добычу ряда золотодобывающих стран. В биосфере золото мигрирует в комплексе с органическими соединениями и механическим путём в речных взвесях. В 1 л морской и речной воды содержится около 4 на 10-9 г. золота. На участках золоторудных месторождений подземные воды содержат золота приблизительно 10-6 г./л. Оно мигрирует в почвах и оттуда попадает в растения; некоторые из них концентрируют золото, например, хвощи, кукуруза. Разрушение эндогенных месторождений золота приводит к образованию золотых россыпей, имеющих промышленное значение. Золото добывается в 41 стране; его основные запасы сосредоточены на территории бывшего Советского Союза, ЮАР и Канаде.
- 322.
Добыча золота
-
- 323.
Добыча золота методами геотехнологии
Информация пополнение в коллекции 20.07.2010
- 323.
Добыча золота методами геотехнологии
-
- 324.
Добыча золоторудного сырья в Казахстане
Информация пополнение в коллекции 27.09.2010 Штокверковый тип характеризуется прожилково-вкрапленным оруденением, связанным с системами разноориентированных кварцевых, кварц-сульфидных и кварц-карбонатных прожилков, приуроченных к эндо- и экзоконтактовым частям интрузий. Рудные тела представлены крутопадающими зонами минерализации (Васильковское, Юбилейное, Жолымбет). Средние содержания золота в рудах 3,6-7,9 г/т. Обогатимость руд различная, в зависимости от форм нахождения золота. Тип минерализованных зон (черносланцевый тип). Имеет одновозрастные аналоги в Узбекистане (Кокпатас), на Урале (Кумак), в Украине (Донбас). Допалеозойскими аналогами являются месторождения Мурунтауского и Ленского районов. В Казахстане объектами добычи являются месторождения Бакырчик, Васильковское, Большевик и др. Важным фактором контроля оруденения является литологический. Оруденение представлено зонами прожилково-вкрапленных руд в черносланцевых (терригенных) толщах, содержащих существенную примесь углеродистого вещества. Форма рудных тел пластообразная, лентовидная, линзообразная. Золото преимущественно связано с сульфидами (пиритом и арсенопиритом), в свободном состоянии отмечается редко. Средние содержания золота в рудах 4,8-9,4 г/т. Руды труднообогатимые, упорные.
- 324.
Добыча золоторудного сырья в Казахстане
-
- 325.
Добыча каменной соли
Информация пополнение в коллекции 08.06.2010 В основной части Днепровско-Донецкой впадины нижнепермские соленосные отложения расположены на глубинах 1500-2500 м и более. Как и в Донбассе, они подразделяются на два типа соленосные и калиеносные. Для них характерные подобный вещественный состав и близкие мощности пластов. В ДДВ способом растворения эксплуатируется Ефремовское месторождение (Харьковская область), приуроченное к штоку девонской каменной соли. Запасы, разведанные до глубины 1200 м, составляют 539,7 млн. тонн. Эксплуатация месторождения осуществляется Первомайским предприятием "Химпром", проектная производительность которого 270 тыс. тонн горной массы или 879 тыс. м3 рассола в год. Ежегодно здесь добывается около 60 тыс. тонн каменной соли, содержание NаСl в которой составляет 99,56%. Рассол используется для получения хлора и каустической соды. При нынешнем уровне добычи промысел обеспечен запасами более чем на 100 лет.
- 325.
Добыча каменной соли
-
- 326.
Добыча нефти и газа
Информация пополнение в коллекции 12.01.2009 В начале нашего века произошли коренные изменения в нефтепереработке. Быстрое распространение карбюраторных бензиновых двигателей внутреннего сгорания с искровым зажиганием для автомобилей (а позже в авиации) потребовало очень много бензина. Это привело прежде всего к усовершенствованию нефтедобычи, так как при старом открытом способе много легкокипящих фракций испарялось на воздухе. Однако этого было недостаточно. При прямой гонке получалось сравнительно мало бензиновых фракций, и они не могли удовлетворить все возрастающий спрос. Особенно остро ощущалась нехватка бензина в годы первой мировой войны. Тогда в промышленность был введен крекинг-процесс разложение углеводородов нефти под влиянием высокой температуры. При нагревании до 500600° С углеводородные цепочки разрываются и образуются осколки с меньшим числом атомов углерода в молекуле, т. е. повышается содержание легкокипящих фракций. Промышленное освоение крекинг-процесса сразу повысило ресурсы бензина. Однако качество бензинов термического крекинга было не всегда удовлетворительным. А высококачественный бензин был нужен авиации.
- 326.
Добыча нефти и газа
-
- 327.
Добыча нефти и газа на Ярино-Каменноложском, Кокуйском и Уньвинском месторождениях
Отчет по практике пополнение в коллекции 20.07.2012 УППН представляет собой небольшой завод по первичной (промысловой) подготовке нефти (т.е. дегазация, обезвоживание, обессоливание, стабилизация). В сырую нефть (рис. 4.2), поступающую по линии I, подается деэмульгатор (по линии II). Насосом 1 нефть направляется в теплообменник 2, в котором нагревается до 50 ¸ 60°С горячей стабильной нефтью, поступающей по линии III, после стабилизационной колонны 8, Подогретая нефть в отстойнике первой ступени обезвоживания 3 частично отделяется от воды и проходит через смеситель 4, где смешивается с пресной водой, поступающей по линии V, для отмывки солей, и направляется в отстойник второй ступени 5 и по линии VI в электродегидратор 6. Отделенная вода отводится по линиям IY. При необходимости улучшения степени обессоливания применяют несколько смесителей, отстойников и электродегидраторов, включенных последовательно. Обессоленная нефть насосом 14 направляется в отпарную часть стабилизационной колонны 8 через теплообменник 7. Нагрев нефти в теплообменнике 7 до 150¸1600С осуществляется за счет тепла стабильной нефти, поступающей непосредственно снизу стабилизационной колонны 8, В стабилизационной колонне происходит отделение легких фракций нефти, которые конденсируются и передаются на ГПЗ. В нижней (отпарной) и верхней частях стабилизационной колонны установлены тарелочные устройства, которые способствуют более полному отделению легких фракций. Внизу отпарной части стабилизационной колонны поддерживается более высокая температура (до 2400С), чем температура нефти, поступающей вверх отпарной части. Температура поддерживается циркуляцией стабильной нефти из нижней части стабилизационной колонны через печь 13. Циркуляция стабильной нефти осуществляется насосом 12 по линии X. В печи 13 может также подогреваться часть нестабильной нефти, которая затем подается вверх отпарной колонны по линии XI. В результате нагрева из нефти интенсивно испаряются легкие фракции, которые поступают в верхнюю часть стабилизационной колонны, где на тарелках происходит более четкое разделение на легкие и тяжелые углеводороды. Пары легких углеводородов и газ по линии VII из стабилизационной колонны поступают в конденсатор-холодильник 9, где они охлаждаются до 30°С, основная их часть конденсируется и накапливается в емкости орошения 10. Газ и несконденсировавшиеся пары направляются по линии VIII на горелки печи 13. Конденсат (широкая фракция легких углеводородов) насосом 11 и перекачивается в емкости хранения, а часть по линии IX направляется вверх стабилизационной колонны на орошение. Часто для перемещения нефти от АГЗУ до ЦСП применяют ДНС - дожимную насосную станцию, т.к. пластового давления оказывается недостаточно.
- 327.
Добыча нефти и газа на Ярино-Каменноложском, Кокуйском и Уньвинском месторождениях
-
- 328.
Долгосрочный прогноз погоды
Контрольная работа пополнение в коллекции 21.11.2010 Предсказания погоды по предшествующей синоптической обстановке Первые исследования в области гидрологических прогнозов, основанные на учете влияния атмосферных процессов, как известно, принадлежат В. Ю, Визе. Визе показал, что характер ледовой обстановки полярных морей нужно рассматривать как следствие интенсивности общей циркуляции атмосферы, так как характером циркуляции атмосферы определяется последующее тепловое и динамическое состояние воздушных масс, т.е. характер атмосферной циркуляции определяет температуру воздуха, скорость и направление ветра последующего периода. Эти исследования Визе производил путем просмотра и изучения карт среднемесячного и сезонного атмосферного давления воздуха, составленных для полярных морей отдельно для групп лет с легкой и с тяжелой деловитостью. Изучение таких карт позволило Визе, а затем и другим исследователям, установить очень важные особенности процессов атмосферной циркуляции, определяющих тот или иной характер ледовых условий указанных морей. Этот метод Визе назвал "методом барических шаблонов".
- 328.
Долгосрочный прогноз погоды
-
- 329.
Доломит. Корунд. Гранит. Озерно-ледниковые отложения
Контрольная работа пополнение в коллекции 20.06.2012 Радиометрические методы разведки (радиометрия) - методы электрический разведки, основанные на изучении электромагнитных полей с целью поиска и разведки месторождений рудных полезных ископаемых и геологического картирования территории. Различают аэро-, наземные, скважинные модификации радиоволнового метода разведки, а также исследования в горных выработках. Основной метод в скважинах и горных выработках - радиопросвечивание, при проведении которого в одной из скважин или горной выработке размещается излучающее устройство, а в соседних измеряется напряжённость электрического или магнитного поля на частоте, оптимальной для решения поставленной геологической задачи. Хорошо проводящие рудные тела, находящиеся между излучателем и приёмником, поглощают, отражают и рассеивают энергию переменного электромагнитного поля и создают область экранирования, по положению границ которой определяется местонахождение тел в изучаемом пространстве. Относительно слабо проводящие рудные тела выделяются по области волноводного эффекта, т.е. по увеличению напряжённости поля. Основные из наземных и аэровариантов радиоволновых методов разведки является метод радиокип (радиокомпарации и пеленгации) или радиоволновое профилирование в диапазоне сверхдлинных радиоволн. Метод основан на изучении изменения напряжённости поля мощных радиостанций (диапазон от 10 до 30 кГц) над участками земной коры с различной электрической проводимостью. В методе используются эффекты отражения радиоволн от границ раздела слоёв с различной проводимостью и возбуждение в рудных телах вторичных токов. Радиокип в диапазоне сверхдлинных волн используется для картирования и обнаружения рудных тел на глубинах, превышающих десятки метров.
- 329.
Доломит. Корунд. Гранит. Озерно-ледниковые отложения
-
- 330.
Дослідження режиму опадів у південно-західній частині Одеської області
Курсовой проект пополнение в коллекции 20.11.2010 - Агроклиматический атлас Украинской ССР / Под ред. С.А. Сапожниковой. - Киев: Урожай, 1964. - 37 с.
- Бабиченко В.Н. и др. Природа Украинской ССР. T.I. Климат/ В.Н. Бабиченко, М.Б. Барабаш, К.Т. Логвинов, В.И. Ромушкевич, Л.И. Сакали, М.И. Щербань. - Киев: Наукова думка, 1984. - 232 с.
- Бабиченко В.Н., Розова Е.С. Климатологические исследования // В кн.: Гидрометеорологическая служба Украины за 50 лет Советской власти. - Л.: Гидрометеоиздат, 1970. - С.222-226.
- Бойченко С.Г., Волощук В.М., Дорошенко І.А. Закономірності формування мікрокліматичних умов відкритих ландшафтів України // 36. праць "Проблеми ландшафтного різноманіття України". - Київ: - 2000. - С.243-247.
- Будыко М.И. Климат в прошлом и будущем. - Л.: Гидрометеоиздат, 1980. - 351 с.
- Бучинский И.Е. Климат Украины. - Л.: Гидрометеоиздат, 1960. - 130 с.
- Волеваха М.М., Гойса M.I. Енергетичні ресурси клімату України. - Київ: Наукова думка, 1967. - 132 с.
- Вразливість і адаптація екологічних та економічних систем до зміни клімату /За ред.В. В. Васильченка. М.В. Ряпцуна, І.В. Трофимової. - Київ. - Агенство з раціонального використання енергії та економії, 1998. - 203 с.
- Географічна енциклопедія України. - Київ: УРЕ. 1989, 1990, 1993. - T. I - 3. Гидрометеоиздат, 1971. - 328 с.
- Глобальный климат. /Под ред. Дж.Т. Хотона. - Л.: Гидрометеоиздат, 1987. - 501с.
- Гук M.I., Половко I.К., Прихотько Г.Ф. Клімат Української РСР. - Київ: Радянська школа, 1958. - 72 с.
- Гулинова Н.В. Методы агроклиматической обработки наблюдений. - М.: Гидрометеоиздат, 1974. - 152 с.
- Дмитренко В.П. Сучасні проблеми агрометеорологічних стратегій адаптації землеробства до погоди і клімату в Україні // Наукові праці НДІ Землеробство. - 2001. - Вип.76. .
- Дмитренко В.П. Періодичність та шкодочинність посух // Землеробство в умовах недостатнього зволоження / За ред.В.М. Крутя і О.Г. Тараріко. - Київ: Аграрна наука, 2000. - С.6 - 9.
- Дмитренко В.П., Дячук В.А. Кліматичні аспекти проблеми сталого розвитку України // Проблеми сталого розвитку України. - Київ: БМТ, 1998. - С.283 - 293.
- Довідник з агрокліматичних ресурсів України. С.2, ч.2. Агрокліматичні умови росту та розвитку основних сільськогосподарських культур/ Гол. ред. М.П. Скрипник, Заст. Гол. Ред.В.П. Дмитренко, М.Ф. Цупенко. - Київ: УкрГМЦ, 1993. - 718 с.
- Дроздов О.А. и др. Климатология / О.А. Дроздов, В.А. Васильев, Н.В. Кобышева, А.Н. Раевский, Л.К. Смекалова, Е.П. Школьный. - Л.: Гидрометеоиздат, 1989. - 568 с.
- Зведений річний огляд стихійних гідрометеорологічних явищ, якіспостерігалися на території України у 1966-2000 pp. - Київ: Держкомгідромет, 2001. - 86 с.
- Климат Украины / Под ред. Г.Ф. Прихотько, А.В. Ткаченко, В.Н. Бабиченко. - Л.: Гидрометеоиздат, 1967. - 413 с.
- Климатический атлас Украинской ССР. - Л.: Гидрометеоиздат, 1968. - 232 с.
- Кліматологія. Терміни та визначення основних понять. - ДСТУ 3992 - 2000. - Київ: Держстандарт України, 2001. - 40 с.
- Кобышева Н.В., Гольберг М.А. Методические указания по статистической обработке метеорологических рядов. - Л.: Гидрометсоиздат, 1990. - 86 с.
- Константинов А.Р. Испарение в природе. - Л.: Гидрометеоиздат, 1968. - 531 с.
- Краткий агроклиматический справочник Украины / Под ред.К.Т. Логвинова. - Л.: Гидрометеоиздат, 1976. - 256 с.
- Лебедев А.Н. Продолжительность дождей на территории СССР. - Л.: Гидрометеоиздат, 1964. - 510 с.
- Ліпінський В.М. Глобальна зміна клімату та її відгук в динаміці клімату України // В кн.: Матеріали Міжнародної конференції "Інвестиції та зміна клімату: можливості для України". - Київ: - 2002. - С.177 - 185.
- Логвинов К.Т., Бабіченко В.М., Щербань M.I. Дослідження з прикладної кліматології на Україні і перспективи розвитку їх // В кн.: Проблеми географічної науки в Українській РСР в період науково-технічного прогресу. - Київ: Видавниче об'єднання "Вища школа", 1976. - С.120 - 129.
- Метеорологія. Терміни та визначення основних понять. ДСТУ 3513 - 97. - Київ: Держстандарт України, 1997. - 57 с.
- Наставление гидрометеорологическим станциям и постам. Вып.3.4.1 Метеорологические наблюдения на станциях. - Л.: Гидрометеоиздат, 1985. - 300 с.
- Науково-прикладний довідник з агрокліматичних ресурсів України (засушливі явища). С.2. Ч.4 /Відп. ред. М.Ф. Цупенко. - Київ: Держкомгідромет, 1995. - 206 с.
- Сапожникова С.А. Микроклимат и местный климат. - Л.: Гидрометеоиздат, 1950. - 242 с.
- Сытник К.М. Природа украинской ССР - К.: Наукова думка, 1984 - 231
- Трофимова И.В. Изменения режима осадков на Украине // Метеорология и гидрология. - 1988. - №1. - С.24 - 33.
- Фізична географія Української РСР / За ред.О.М. Маринича. - Київ: Вища школа, 1982. - 207 с.
- Шарова В.Я. Число дней с осадками различной величины на территории Европейской части СССР. - Л.: Гидрометеоиздат, 1958. - 144 с.
- Швер Ц.А. Атмосферные осадки на территории СССР. - Л.: Гидрометеоиздат, 1976. - 302 с.
- Щербань М.И. Микроклиматология. - Киев: "Вища школа", 1985. - 222 с.
- Алисов Б.П. Принципы климатического районирования СССР // Изв. АН СССР. Сер. геогр. - 1957. - №6. - С.118-125.
- Бабиченко В.Н. Распределение на Украине осадков, дающих за сутки не менее 100 мм // Тр. УкрНИГМИ. - 1959. - Вып.18. - С.30-38.
- Бабіченко В.М. та ін. Підсумки та перспективи розвитку кліматологічних досліджень на Україні /В.М. Бабіченко, М.Ю. Кулаківська, К.Т. Логвинов, Л.І. Сакалі, М.І. Щербань // В кн.: Теоретичні і прикладні питання географії. - Київ: Видавництво Київського університету, 1972. - С.83 - 94.
- Бойченко С.Г., Волощук В.М., Дорошенко І.А. Глобальне потепління та його наслідки на території України // Український географічний журнал. - 2000. - №3. - С.59-68.
- Вилькенс А.А., Дмитренко В.П. О динамике влагозапасов почвы при засухах // Тр. УкрНИГМИ. - 1978. - Вып.169. - С.23-39.
- Волощук В.М., Бойчснко С.Г. Вплив загального глобального потепління клімату на середньорічну інтенсивність атмосферних опадів в Україні/Доповіді НАНУ. - 1998. - № 6. - С.125-130.
- Волощук В.М., Гродзинський М.Д., Шищенко П.Г. Географічні проблеми сталого розвитку України // Український географічний журнал. - 1998. - №1. - С.13-18.
- Груза Г.В., Ранькова Э.Я. Климатическая изменчивость повторяемости и продолжительности основных форм циркуляции в умеренных широтах Северного полушария // Метеорология и гидрология. - 1996. - №1. - С.12 - 22.
- Дмитренко В.П. О комплексном агрометеорологическом показателезасушливости // Тр. УкрНИГМИ. - 1978. - Вып.169. - С. З - 22.
- Кобышева Н.В., Копанев И.Д. Основные принципы ведения "Кадастра по климату СССР" // Тр. ГГО. - 1980. - Вып.460. - С. З - 7.
- Кошеленко И.В. Влияние крупных водоемов на распределение осадков и засух // Тр. УкрНИГМИ. - 1974. - Вып.108. - С.114 - 127.
- Логвинов К.Т., Барабаш М.Б. Исследования периодических измененийтемпературы воздуха и осадков на Украине // Тр. УкрНИИ Госкомгидромета. - 1987. - Вып.224. - С.71 - 76.
- Соседко М.Н. О принципах определения максимального слоя осадков за расчетный инк-рва. і времени // Метеорология и гидрология. - 1980. - №10. - С.39 - 43.
- 330.
Дослідження режиму опадів у південно-західній частині Одеської області
-
- 331.
Драгоценные камни как коллекционный материал
Курсовой проект пополнение в коллекции 17.02.2010 Первые сведения об отечественном коллекционировании связаны с периодом преобразующей деятельности Петра I- строительством каменной столицы на Неве, открытием месторождений руд и самоцветов на Урале и в Сибири, созданием Кунцкамеры, в которую им была передана небольшая личная коллекция изделий из камня. В дальнейшем возникли дворцовые музеи, где находились и коллекции минералов. Коллекционирование минералов, как и минералогические знания, были в моде. Одними из первых минералогических коллекций, как писал А.Е. Ферсман, были «горки» уральских минералов XVIII в., вызывавшие интерес к малоизвестному богатому краю, находящемуся на границе Европы и Азии. Крупная коллекция, систематизированная академиком П.С. Палласом, размещалась в Эрмитаже. Складывалась отечественная минералогическая школа; в 1817 г. было образовано минералогическое общество. Развитие промышленности и торговли стимулировало стремление к собирательству коллекций самоцветов, которое распространилось на средние сословия и интеллигенцию. Многие коллекционные образцы были найдены попутно при добыче различных полезных ископаемых. В начале XIX в. научные коллекции стали собирать университеты, институты, музеи, а также отдельные любители камня. На рубеже века сбором коллекций занималось Уральское общество любителей естествознания, Московское товарищество «Природа и школа» и др. Кустарная добыча коллекционного материала и его обработка до 1914 г. производились только на Урале. Система сбора материала на разрабатывавшихся в то время месторождениях (копях) позволила обеспечить отечественные, а также зарубежные музеи уникальными экземплярами минералов и кристаллов, содействовала их научному изучению и даже в настоящее время вызывает восхищение. Определенное значение имела здесь малопроизводительная технология, основанная главным образом на ручном труде и ограниченном использовании взрывчатых веществ, что способствовало сохранению коллекционного материала. Состояние коллекционирования достаточно полно осветил в конце прошлого века известный уральский писатель Д.Н. Мамин-Сибиряк. «Для минералогической коллекции идет всякий камень и часто отдельные штуфы, негодные для огранки или вообще поделки, оцениваются тысячами рублей. Истинный любитель-коллекционер не пожалеет ничего, чтобы не упустить какого-нибудь уникума. Соперниками коллекционеров-минералогов являются коллекции, составляемые для различных учебных заведений. Таким образом, никакой камень не пропадает; если самоцвет не годится для огранки, он поступает в коллекции как штуф, туда же идут обрезки и обломки от поделочных камней, как орлец, ляпис-лазурь и яшмы…» Во многом приведенное высказывание сохранило свое значение и до настоящего времени. Коллекции минералогических музеев продолжают пополняться прекрасными экспонатами декоративными и редкими минералами и горными породами, а также изделиями из них. Например, сбором коллекции в течение 40 лет занималось организованное В.И. Крыжановским Бюро минералов при Минералогическом музее им. А.Е. Ферсмана АН СССР. Создаются новые музеи, один из которых геопарк в г. Москве. Кроме всемирно известных музеев, таких как «Алмазный фонд России», Ленинградского горного института, Московского государственного университета, Уральского политехнического института и многих других, имеются крупные минералогические музеи при филиалах и институтах России (в г. Апатиты при Кольском филиале АН России и в Академгородке при Сибирском филиале АН России), академиях наук, ведомственных научно-исследовательских институтах, территориальных и геологических объединениях, экспедициях и партиях, а также комбинатах, проводящих эксплуатационные работы на крупных комплексных месторождениях, где камнесамоцветное сырье является попутным компонентом. В советские времена в Москве проводились выставки самоцветов и изделий «Удивительное в камне». На выставке было представлено до 150 коллекций, составленных, как правило, из прекрасных камней. Выставки и сейчас пользуются большим успехом, привлекают внимание к самоцветам, способствуют углублению знаний в области минералогии, служат важным фактором в деле возрождения культуры камня. В Воронеже проводятся показательные выставки «Мир камня».
- 331.
Драгоценные камни как коллекционный материал
-
- 332.
Драгоценные камни Крыма
Дипломная работа пополнение в коллекции 08.10.2010 Турмалин один из самых дорогих самоцветов. На Востоке турмалин использовался в ювелирных украшениях издавна. В Европу он впервые был завезен голландцами в начале XVIII века с Цейлона, где камень называли turamali, что в переводе с сингалезского означало "разноцветный". Многие турмалины из сокровищ русских царей считались прежде рубинами (Рис. 11). Известно, что шведский король Густав Адольф подарил императрице Екатерине Второй турмалин величиной с голубиное яйцо, преподнеся его как рубин [15]. Турмалин имеет очень широкую гамму окрасок. В природе наиболее часто встречаются турмалины черного цвета, коричневые, бесцветные, синие, ярко-желтые. Наиболее редкие цвета турмалина и соответственно самые дорогие - красный, розовый и зеленый. Нередко кристаллы турмалина бывают многоцветны. Разнообразие цветов и их вариаций по два или три в одном кристалле турмалина поистине удивительно. Его можно назвать самым разноцветным самоцветом. Иногда различные цвета окрашивают противоположные части кристалла, иногда середина кристалла одного цвета, а вокруг нее располагаются концентрические зоны других цветов. Кристаллы с розовой сердцевиной и зелеными краями - очень популярная, но редкая "арбузная" разновидность турмалина (добывается в Бразилии США). Часто ювелиры используют такой турмалин не в ограненном виде, а нарезанный тонкими пластинами, чтобы подчеркнуть этот необычный эффект [8]. Турмалин является сложным кольцевым силикатом, кристаллизующимся в тригональной сингонии, дитригонально-пирамидальном виде симметрии, с общей формулой (Na, Li, Ca) (Fe, Mg, Mn, Al)3 (Al, Fe)6x (OH)4 [Bo3]3[Si6O18]. По химическому составу выделяют разновидности, обогащенные двухвалентным железом шерл, магнием дравит, кальцием увит, марганцем тсилаизит, трехвалентным железом бюргерит, литием и алюминием эльбаит и его кальциевый аналог лиддикоатит. В природе наблюдаются несколько изоморфных родов турмалина: шерл-дравитовый, шерл-эльбаит-тсилаизитовый и шерл-бюргеритовый. Химический состав и положение различных элементов в структуре определяют окраску турмалина. Минерал представляет собой длинные призматические кристаллы [12].
- 332.
Драгоценные камни Крыма
-
- 333.
Драгоценный камень опал
Информация пополнение в коллекции 03.10.2010 Благородные опалы встречаются редко. Даже в весьма богатых месторождениях опала, благородные его разновидности составляют всего 1%. Промышленные месторождения благородных опалов известны в Европе и Южной Америке, но уникальными считаются месторождения Австралии, дающие 8095% мировой добычи опала. Именно там, в Новом Южном Уэльсе в 1877 году началась разработка месторождений опалов. Первые же опалы были случайно найдены в Австралии в 1849 году на ферме Тарравила. Охотник, преследуя кенгуру, смертельно ранил животное, которое, пытаясь вскочить на ноги, сорвало пласты дерна. Взгляду охотника открылась потрясающей красоты самоцветная жила, сверкающая всеми цветами радуги. Обнаруженное месторождение принадлежало английской королеве. Коммерческие интересы британской короны требовали, чтобы опал добывался и продавался. И королева Виктория рекламирует свой товар. На приемах и балах, в парламенте и на ипподроме, в церкви и театре она появляется в украшениях с опалами.1890 году в Уайт-Клиффс началась разработка первых месторождений. Такие имена как Уайт-Клиффс, Лайтнинг-Ридж, Андамука или Кубер-Педи заставляют блестеть глаза любителей опалов, поскольку так называются легендарные опаловые поля Австралии. Самое известное, это Лайтнинг-Ридж, место, где находят такие желанные «чёрные опалы». Из Андамука, где добывают кристальные и белые опалы, происходит самая большая плита опаловой породы, весящая 6843 килограмма «пламя пустыни Андамука». Кубер-Педи это слово на языке аборигенов означает «белый мужчина в яме». Оно визуально описывает, как выглядела добыча этих драгоценных камней. Большое количество старателей прятались в глубоких земляных ямах для защиты от жары днем и холодного ветра ночью. Разработки велись с помощью кирки и лопаты. Из шахт, глубиной от 5 до 40 метров, вручную вытягивались вёдра, наполненные опалонесущими породами. Именно на этих глубинах находятся трещины и полости, наполненные опалами и вырабатываемые до сих пор. Быть искателем опалов это, как и раньше, полное лишений занятие, хотя и применяются такие технические средства, как грузовые автомобили и ленточные конвейеры. Надежда найти находку своей жизни привлекает, снова и снова, мужчин и женщин в горячую и пыльную Австралию. В Лайтнинг-Ридж находят самые ценные опалы черные.
- 333.
Драгоценный камень опал
-
- 334.
Дробление, измельчение и подготовка сырья к обогащению
Дипломная работа пополнение в коллекции 26.06.2011 № пп Тип мельницыОсновные размеры мельницКоэффи циент запасаКоличество мельницПроизво дительностьМасса мельницУстановочная мощность1Шаровая с разгрузкой через решетку3600 × 50001,0381014165,0162502Шаровая с разгрузкой через решетку4000 × 50001,1071045258,0220003Шаровая с разгрузкой через решетку3600 × 50001,1051064300,020000Выбираем мельницу МШР 3600 × 5000 ( 8 шт )
- 334.
Дробление, измельчение и подготовка сырья к обогащению
-
- 335.
Дробление, измельчение, подготовка сырья к обогащению
Дипломная работа пополнение в коллекции 13.01.2012 Б) Расчет второй и третьей стадии дробления. В операции грохочения II отсеивается класс 52-0 мм, а в операции IV- класс 13-0 мм, размер выходной щели дробилки второй стадии дробления iIII=30 мм.Позтому для расчета второй стадии дробления необходимо определить содержание в продукте 2 класса-52мм, а для расчета третьей стадии дробления необходимо знать содержание в этом же продукте классов -30 мм и -13 мм. Кроме того, для выбора грохотов необходимо знать содержания в питании грохота классов с зернами, размером, меньшим размера отверстий сит и меньшим половины размера отверстий сит, т.е. необходимо определить значения ?2-30, ?7-13,?7-6,5. Таким образом, для продукта 2 необходимо определить значения ?2-52, ?2-30, ?2-13, для продукта 6 - ?6-13 и для продукта 7 - ?7-13 и ?7-6,5.
- 335.
Дробление, измельчение, подготовка сырья к обогащению
-
- 336.
Експлуатація Шебелинського нафтового родовища
Дипломная работа пополнение в коллекции 11.05.2011 Спосіб експлуатації свердловини при якому підйом нафти або суміші нафти з газом від вибою до поверхні здійснюється за рахунок природної енергії називається фонтанним способом. Якщо тиск стовпа рідини яка заповнює свердловину менший від пластового тиску і привибійна зона не забруднена тобто стовбур свердловини сполучається з пластом, то рідина буде переливатися через устя свердловини, отже свердловина буде фонтанувати. Фонтанування може здійснюватись під впливом гідростатичного напору, або енергії газу який рухається, або того і іншого разом. Фонтанування тільки за рахунок гідростатичного тиску пласта явище дуже рідкісне в практиці експлуатації нафтових свердловин. Це відбувається тоді коли газ у пластових умовах повністю розчинений у нафті і у пласті рухається однорідна рідина. У більшості випадків головну роль у фонтануванні свердловин відіграє газ який міститься разом з нафтою в пласті. Це справедливо навіть для родовищ із явно вираженим водонапірним режимом, коли газ в пластових умовах повністю розчинений в нафті і в пласті рухається однорідна рідина. При експлуатації свердловини пробуреної на такий пласт вільний газ із нафти починає виділятись лише в підйомних трубах і на такій глибині де тиск нижчий від тиску насичення нафти газом. В цьому випадку підйом нафти буде здійснюватись за рахунок гідростатичного напору та енергії стиснутого газу, яка проявляється тільки у верхній частині свердловини. На глибині відповідній тиску насичення нафти газом останній починає виділятись із нафти у вигляді маленьких бульбашок. По мірі просування догори бульбашки газу зазнають усе меншого тиску, внаслідок чого обєм бульбашок газу збільшується і густина суміші рідини та газу зменшується. Загальний тиск стовпа газорідинної суміші на вибої свердловини стає меншим за пластовий, що виникає самовиливання нафти, тобто фонтанування свердловини. При всіх способах експлуатації свердловини в тому числі і фонтанному підйом рідини та газу на поверхню здійснюється по трубах невеликого діаметру які спускаються в свердловину перед початком експлуатації ці труби називають НКТ. Залежно від способу експлуатації їх називають фонтанними, компресорними, насосними, підйомними (ліфтовими). Звісно, що фонтанний спосіб є найекономічнішим і як природний спосіб має місце на щойно відкритих енергетично не визначених родовищах. Якщо в покладі підтримується пластовий тиск шляхом закачування води чи газу, то в окремих випадках удається значно продовжити період фонтанування свердловини. Фонтанним способом вилучається основна частина світового видобутку нафти 75?80% . Якщо свердловини не можуть фонтанувати їх переводять на механізований спосіб експлуатації тобто газліфтний чи насосний. В цьому випадку за рахунок пластової енергії нафта піднімається лише на висоту менше глибини свердловини, тобто рівень в свердловині не доходить до устя свердловини. Для піднімання рідини до устя свердловини і подавання її у викидну лінію (збірний трубопровід) потрібно ввести в свердловину штучну енергію. У разі газліфтного способу у свердловину подають енергію стиснутого газу, а у разі насосного енергія яка створюється насосом. Під час експлуатації свердловин будь-яким (фонтанним, насосним або газліфтним способом) у міру проходження нафти вздовж стовбура із неї виділяється розчинений газ. Внаслідок зменшення тиску, коли він стає меншим тиску насичення нафти газом. При цьому утворюється газорідинна суміш. Газ який виділяється у вихідному потоці виконує роботу з підйому рідини в трубі, при чому рідина може бути однофазною (нафта) або двофазною (нафта + вода).
- 336.
Експлуатація Шебелинського нафтового родовища
-
- 337.
Естественные режимы разработки нефтяных и газовых месторождений
Контрольная работа пополнение в коллекции 29.03.2012 В газовых и газоконденсатных залежах источниками энергии являются давление, под которым находится газ в пласте, и напор краевых пластовых вод. Соответственно различают газовый и упруговодогазонапорный режимы. Природный режим залежи определяется главным образом геологическими факторами: характеристикой водонапорной системы, к которой принадлежит залежь, и расположением залежи в этой системе относительно области питания; геолого-физической характеристикой залежи - термобарическими условиями, фазовым состоянием УВ, условиями залегания и свойствами пород-коллекторов и другими факторами; степенью гидродинамической связи залежи с водонапорной системой. На режим пласта существенное влияние могут оказывать условия эксплуатации залежей. При использовании для разработки залежи природных видов энергии от режима зависят интенсивность падения пластового давления и, следовательно, энергетический запас залежи на каждом этапе разработки, а также поведение подвижных границ залежи (ГНК, ГВК, ВНК) и соответствующие тенденции изменения ее объема по мере отбора запасов нефти и газа. Все это необходимо учитывать при выборе плотности сети и расположения скважин, установлении их дебита, выборе интервалов перфорации, а также при обосновании рационального комплекса и объема геолого-промысловых исследований для контроля за разработкой. Природный режим при его использовании обусловливает эффективность разработки залежи - темпы годовой добычи нефти (газа), динамику других важных показателей разработки, возможную степень конечного извлечения запасов нефти (газа) из недр. Продолжительность эксплуатации скважин различными способами, выбор схемы промыслового обустройства месторождения и характеристика технологических установок по подготовке нефти и газа также во многом зависят от режима залежи. Знание природного режима позволяет решить один из центральных вопросов обоснования рациональной системы разработки нефтяных и газоконденсатных залежей: возможно ли применение системы с использованием природных энергетических ресурсов залежи или необходимо искусственное воздействие на залежь?
- 337.
Естественные режимы разработки нефтяных и газовых месторождений
-
- 338.
Етапи розвитку земної кори
Информация пополнение в коллекции 19.01.2011 Палеонтологія (від грецьк. "наука про давніх істот") напрям, що вивчає органічний світ минулого й геолого-історичні закономірності його розвитку. Як наука біологічного профілю П. розробляється головним чином геологією, оскільки вивчення викопних решток організмів і слідів життєдіяльності використовується насамперед для визначення віку відкладень, що містять їх, обґрунтування певних стратиграфічних одиниць і з'ясування фізико-географічних обстановок минулого. Палеонтологічний метод є основним у стратиграфії фанерозою. У складі П. виокремлюється палеозоологія, палеоботаніка, мікропалеонтологія, палі-нологія. Основи палеонтологічних знань з'явилися в XVI ст., коли "фігурні камені" та інші прояви "гри природи" почали трактуватися як палеонтологічні рештки (Леонардо да Вінчі, К. Гезнер, Б. Паліссі, Д. Рей та їй;); Ж. Кюв'є (1796), який розробив метод реконструкції викопних організмів за їхніми рештками й зібрав величезний фактичний матеріал, вважається одним із засновників П. як самостійної науки. Його учень Дюкроте де Блен-віль (1822) увів термін "палеонтологія"; незабаром цей курс з'явився в навчальних закладах. XIX ст. було часом формулювання основних принципів і законів П. (природний добір Ч. Дарвіна, біогенетичний закон Е. Геккеля, еволюційна П. В. О. Ковалевського, закон про необоротність еволюції Л. Долло), з'явилися мікроскопічні методи дослідження в П. (X. І. Пандер, 1856). У XX ст. були сформульовані різноманітні й численні гіпотези щодо походження життя, сформувалися нові уявлення про еволюцію й катастрофи в розвитку органічного світу.
- 338.
Етапи розвитку земної кори
-
- 339.
Железные руды
Информация пополнение в коллекции 31.05.2010 В Европейской России Ж. руды значительно распространены на Урале, в центральной и южной России, в Олонецкой губернии, Финляндии и Привислянских губерниях. Значительные месторождения Ж. руд известны также на Алтае, в Саянах и Восточной Сибири, но до сих пор остаются еще неисследованными. На Урале, на восточном склоне хребта, многочисленные месторождения магнитного железняка, из которых до сих пор разрабатываются лишь немногие, находятся в связи с развитыми здесь ортоклазовыми породами (сиенитами и порфирами). Месторождения гор Благодати, Высокой и Магнитной (Ула-Утасе-Тау), по громадному запасу руд занимающие выдающееся место на всем земном шаре. Гора Благодать (см.), наиболее северное из названных месторождений, находится в среднем Урале, около Кушвинского завода. К югу от предыдущей, около Нижне-Тагильского завода, находится другая Ж. гора Урала Высокая. Главная залежь магнитного железняка, в виде гигантского штока, находится на западном склоне горы среди разрушенных в буроватые глины ортоклазовых пород. Месторождение работается около 150 лет открытым разносом. Руда, вообще весьма высокого качества, состоит из магнитного железняка, часто переходящего в скрытно-кристаллический железный блеск (мартит), дает 63-69% металлического железа, но местами содержит вредную примесь медных руд. Не менее значительные запасы руд заключает наиболее южная Магнитная гора на Урале (в Верхнеуральском уезде), имеющая тот же характер, как вышеописанные; до сих пор это месторождение, находящееся в безлесной местности, мало разрабатывается. Красный железняк встречается на Урале только небольшими массами, подчиненными залежам бурого железняка. В последнее время открыто, по-видимому, значительное месторождение этой руды на западном склоне Северного Урала, недалеко от Кутимского завода, около которого находится также недавно открытое наилучшее на Урале месторождение железного блеска в кристаллических сланцах. Напротив, месторождений бурых железняков, иногда крайне значительных, насчитывается на Урале до 3000, принадлежащих к самым разнообразным типам и залегающих пластами, гнездами, залежами как в массивных, так и в слоистых породах, от самых древних до самых новых. В южной России наиболее значительны месторождения Ж. руд в окрестностях Кривого Рога, на границе Екатеринославской и Херсонской губерний, где многочисленные пласты красного железняка и железного блеска залегают среди кристаллических сланцев, и месторождение Корсак-Могилы, в котором между кварцитами и гнейсами открыты мощные залежи магнитного железняка. В Донецком кряже, по соседству с месторождениями каменного угля находятся многочисленные пластовые залежи бурых железняков, переходящих иногда в шпатоватые, среди осадочных пород каменноугольной системы. По разведкам в одной области Войска Донского, на глубине не более 60 м заключается до 23 миллиардов пудов Ж. руды, которые могут дать до 10 миллиардов пудов чугуна. В центральной России подмосковном бассейне Ж. руды, по преимуществу бурые железняки и глинистые сферосидериты, известны давно и во многих местностях и служат предметом энергичной эксплуатации. Все руды тесно связаны с известняками, доломитами и рухляками девонской, каменноугольной и пермской систем и образуют различных размеров гнезда и пластообразные залежи, образовавшиеся гидрохимическим путем действием железосодержащих растворов на известковые породы. Первичной рудой должны считаться сферосидериты, из которых путем выветривания произошли бурые железняки. На севере России и в Финляндии известны многочисленные жилы и залежи магнитного железняка и железного блеска среди массивных пород и кристаллических сланцев архейской группы, в Финляндии служащие предметом эксплуатации. Что касается Олонецкой и Новгородской губерний, то здесь предметом разработки служат исключительно болотные и озерные руды, хотя и содержащие много вредных примесей, но по удобству добычи и обработки представляющие немалое экономическое значение. Запасы озерных руд настолько значительны, что на заводах Олонецкого округа в 1891 г. добыча этих руд достигла 535000 пудов, из которых выплавлено 189500 пудов чугуна. Наконец, в Привислянском крае, в южных его частях, имеются многочисленные месторождения бурых железняков и сферосидеритов
- 339.
Железные руды
-
- 340.
Железо-марганцевые конкреции мирового океана
Информация пополнение в коллекции 12.01.2009 Важно отметить, что в океанской среде Fe образует собственные минералы или входит в состав других (глинистых) как в окисленной, так и в восстановленной (бескислородной) осадочной толще. Mn же в твердой фазе здесь может существовать только в окислительных условиях в форме свободных гидроксидов в высшей степени окисления, близкой к MnO2, но этот предел как правило не достигается из-за сорбционного связывания гидроксидом некоторого количества MnO (обычно 1-2%), за счет окисления которого постепенно наращивается его собственная фаза. Поэтому точнее состав гидроксидов отражает формула: nMnO·MnO2·mH2O. В восстановленных осадках это соединение растворяется, восстанавливаясь до двухвалентного состояния (MnO), и мигрирует к их поверхности в сторону кислород-содержащей среды. Именно это происходит в окраинных районах океанов, где скорости накопления осадков речного стока велики и это создает восстановительные условия в их толще. По существу, окраинные районы океанов являются “фабрикой”, поставляющей Mn и, в меньшей мере, Fe в океан. “В меньшей мере” означает не абсолютное количество Fe, а тот факт, что часть его, поступившая с речным стоком, связывается в восстановленном осадке в форме сульфидов или входит в состав других минералов и выводится из океанского рудогенеза. Это - первый этап разделения этих металлов в океане. В классических трудах Н.М. Страхова показана дальнейшая судьба этих и других металлов в океане и их накопление в благоприятных фациальных условиях (высокие содержания растворенного кислорода, низкие скорости седиментации), которые соответствуют глубоководным - пелагическим областям океанского дна, где и формируются наибольшие концентрации конкреций. Аналогичные условия возникают и на вершинах подводных обнажений, не перекрытых осадком, независимо от их местоположения в океане. В таких случаях нередко формируются рудные корки, особенностью которых является обогащенность Со, поэтому они называются кобальтоносными.
- 340.
Железо-марганцевые конкреции мирового океана