Биология

  • 1121. Загар с точки зрения фотохимика
    Статья пополнение в коллекции 12.01.2009

    Хотя у организма есть немало защитных приспособлений, их возможности не безграничны, о чём следует помнить всем любителям пожариться на солнце. Опасными могут быть и искусственные источники излучения, причём ожог кожи не самая большая из возможных неприятностей. Давно известна канцерогенная активность ультрафиолета, в кругах неспециалистов, пожалуй, несколько преувеличенная. Свет с длиной волны 254 нм и более 334 нм вовсе не проявляет канцерогенного действия: наиболее опасны лучи от 301 до 303 нм, то есть там, где самая высокая чувствительность к ожогу. Однако канцерогенная доза намного превосходит эритемную: опухоль на коже возникает лишь при тысячекратном превышении порога. Эксперименты на животных показали: если сначала немного превысить тот уровень, при котором кожа краснеет, а потом постепенно усиливать облучение, опухоль не появляется вовсе.

  • 1122. Закваски, используемые в молочной промышленности для приготовления кисломолочных продуктов
    Курсовой проект пополнение в коллекции 18.12.2010

    Основными способами тепловой обработки молока для приготовления заквасок являются стерилизация и пастеризация. Стерилизацию молока проводят при температуре 121°С. Продолжительность выдержки молока при указанной температуре устанавливают в зависимости от емкости, в которой стерилизуют молоко: для бутылок и колб по 0,5-1 л 5-10 мин; для бидонов и ушатов по 3-5 л 10-15 мин; для бидонов по 10 л 15-20 мин; для бидонов и ушатов по 20 л 20-30 мин.Стерилизацию молока для материнской закваски проводят в автоклавах, которые устанавливают в отдельном помещении. После стерилизации молоко охлаждают до температуры заквашивания и в него сразу же вносят закваску или бактериальный концентрат. Стерилизованное молоко, приготовленное в бутылках и колбах с ватными пробками, допускается хранить при комнатной температуре в течение 3-5 сут. При этом проводят контроль молока на стерильность путем термостатирования при температуре 37 °С в течение 3 сут. Для контроля берут 1-2 бутылки или колбы от каждой партии молока. Отсутствие клеток в микроскопическом препарате, приготовленном из молока после термостатирования, указывает на его стерильность. Стерилизованное молоко в ушатах или бидонах хранить не допускается. Качество пастеризованного молока проверяют по эффективности пастеризации. Для этого асептически отбирают 10-20 см3 пастеризованного молока и термостатируют при 40-45 °С в течение 24-48 ч, отмечают характер сгустка и просматривают его микроскопический препарат.

  • 1123. Закон природы
    Контрольная работа пополнение в коллекции 03.11.2010

    При решении проблемы о происхождении комет нельзя обойтись без знания химического состава вещества их ядер. Предположение о том, что причиной увеличения яркости комет и появления у них хвостов при сближении с Солнцем является присутствие льдов в их ядрах было высказано С.К.Всехсвятским в 1948г., хотя близкие по смыслу идеи высказывались еще П.С.Лапласом и Ф.Бесселем. Подробная модель кометных ядер была предложена Ф.Уипплом двумя годами позже. Согласно этой модели ядро кометы представляет собой ком из «грязного снега», то есть сравнительно рыхлое образование из комков льдов разного состава (воды, аммиака, метана и углекислого газа) смерзшиеся с пылью и отдельными фрагментами горных пород. Возрастание блеска кометы объясняется ее нагреванием при сближении с Солнцем и потерей массы ее ядром вследствие испарения (точнее сублимации, то есть переходом вещества из твердой фазы сразу в парообразную, минуя жидкую). Если у новых или «молодых» комет, которые совершили всего одно или несколько прохождений через перигелий этот процесс идет очень интенсивно, так как они состоят из реликтовых (неизмененных) льдов, то у «старых» комет при возвращениях к Солнцу испарение вещества все больше замедляется по причине накопления на поверхности их ядер тугоплавких частичек (пыли и более крупных силикатных фрагментов) и образования защитной корки, которая предохраняет оставшийся под ней лед от дальнейшего испарения. Если исходить из модели Уиппла, то льды разных летучих соединений должны были бы испаряться с разными скоростями и, что самое главное при разных температурах, а значит, на разных расстояниях от Солнца. Но это не было подтверждено спектральными наблюдениями. Поэтому в 1952г. модель Уиппла была усовершенствована П.Свингсом и А.Дельземом. Они предположили, что в кометные ядра входят не чистые льды различных летучих соединений веществ, а их гидраты. В каждое из таких соединений наряду с «родительской» молекулой данного вещества входят и несколько молекул воды, число которых определяется свойствами «родительской» молекулы. Такие сложные гидраты могут образовываться в космическом вакууме при очень низких температурах. По физическим свойствам все они очень похожи и, в частности, испаряются примерно при одинаковой температуре и с близкими скоростями. Наиболее правдоподобной для «новых» комет в настоящее время считается модель, в которой ядро кометы представляется как очень рыхлое образование, типа гигантского снежного кома. После многократных прохождений вблизи Солнца «новая» комета стареет, то есть ее ядро уменьшается в размерах за счет потери большей части летучих соединений и покрывается коркой из нелетучих соединений. С другой стороны, ядра «старых» комет, к которым относится и комета Галлея, хорошо описываются «пятнистой» моделью. Название этой модели связано с предположением о том, что в поверхностной теплоизолирующей корке имеются дыры, трещины или другие обнажения подкоркового вещества с высоким содержание летучих соединений, из которых происходит интенсивная сублимация этих веществ, вплоть до истечения газовых струй, способных вызывать реактивные ускорения кометного ядра.

  • 1124. Закон сохранения массы до Эйнштейна и после
    Информация пополнение в коллекции 25.04.2010

    На самом деле пространство отнюдь не абсолютно, и это должно проявляться при движении со скоростями, приближающимися к скорости света. При этом размеры тел оказываются различными, когда их измеряют в разных системах отсчета. И время не абсолютно: что случается одновременно в одной системы отсчета, то оказывается не одновременным в другой системе. И только единое четырехмерное пространство-время имеет абсолютный смысл, будучи инвариантным, то есть одним и тем же во всех системах отсчета. Это стало ясно Эйнштейну в 1905 году, когда он дополнил принцип относительности Галилея утверждением о конечной скорости распространения всех взаимодействий в природе. Предельная скорость распространения взаимодействий равна скорости света в пустоте c, и она одинакова во всех инерциальных системах отсчета, будучи универсальной физической постоянной. Из новой концепции пространства-времени выросла релятивистская механика, заменившая механику Ньютона. Центральным теоретическим и главным практическим следствием механики Эйнштейна стало новое понимание массы и энергии физических тел и их систем. Ньютоновское определение массы как отношения силы к ускорению в ней уже не действует. Такое отношение, как оказывается, может быть различно для одного и того же тела в разных обстоятельствах. Пусть тело движется так, что его скорость меняется только по направлению, но не по величине. В этом случае сила, действующая на тело, направлена перпендикулярно скорости. Это один пример. А в другом -- скорость меняется, наоборот, только по величине, но не по направлению, и сила направлена по скорости. Согласно новой механике, во втором случае отношение силы к ускорению больше, чем в первом. Если в обоих случаях скорость тела составляла, скажем, одну треть от скорости света, то разница будет приблизительно в 13%. Дело, конечно, не в конкретных цифрах; важнее то, что понятие массы в релятивистской физике стало принципиально иным. Оно оказалось богаче внутренним физическим содержанием и новыми глубинными связями. Это прежде всего связи между массой и энергией.

  • 1125. Закон сохранения энергии в макроскопических процессах
    Информация пополнение в коллекции 01.08.2010

    Майер определил, что количество теплоты, необходимое для нагревания единицы массы газа на один градус, совершаемое при постоянном давлении (С), всегда больше, чем количество теплоты, необходимое для нагревания единицы массы вещества на один градус при постоянном объеме (Cv). Нагревание при постоянном давлении отличается от нагревания при постоянном объеме тем, что изменение объема газа при расширении сопровождается толканием поршня, то есть совершением работы. Если нагревание при постоянном объеме идет только на увеличение внутренней энергии газа, то нагревание при постоянном давлении, помимо такого же увеличения внутренней энергии газа, сопровождается также совершением механической работы. Если рассматривать теплоту как "силу", рассуждал Майер (а под "силой" он понимал то, что впоследствии стало называться энергией), то тогда понятно, почему С больше, чем С . Более того, если найти, на сколько С больше, чем Су, и сопоставить полученный результат с величиной совершенной работы, то можно получить механический эквивалент теплоты. Этот результат Майер вычислил в 1841 году. А в 1845 году в работе "Органическое движение в связи с обменом веществ" он впервые дает формулировку закона сохранения и превращения энергии. Правда, он употребляет другую терминологию, используя понятия "сила движения", "сила падения", "химическая сила", "теплота", "электричество" и т. д. Сейчас мы заменили бы слово "сила" словом "энергия". "Сила как причина движения является неразрушимым объектом, никакое действие не возникает без причины. Никакая причина не исчезнет без соответствующего ей действия... Количественная неизменность данного есть верховный закон природы... Различные силы могут превращаться друг в друга. Эта сила в вечной смене циркулирует как в мертвой, так и в живой природе". "При всех физических и химических процессах данная сила остается постоянной величиной"10. Таким образом, Майер определил механический эквивалент теплоты, отверг теплород как вещественную субстанцию, определил теплоту как "силу" движения и сформулировал закон сохранения и превращения "сил". Однако при определении механического эквивалента теплоты он не точно проделал расчет. И важное место в истории развития науки о тепловых явлениях заняли результаты опытов Джоуля, которые были проделаны с такой тщательностью, что оказали убедительное воздействие на умы современников, сломив, в конце концов, их сопротивление. Опыт Джоуля состоял в том, что опускающийся груз вращал лопатку, погруженную в различные жидкости. В результате жидкость перемешивалась, что приводило к увеличению температуры смеси, которую Джоуль измерял термометром. Сопоставляя значение механической работы опускающегося груза с количеством теплоты, необходимой для нагревания смеси жидкостей на соответствующую температуру, Джоуль очень точно определил значение механического эквивалента теплоты.

  • 1126. Закон сохранения энергии в природе. Загрязнение окружающей среды
    Контрольная работа пополнение в коллекции 15.11.2010

    Тот факт, что катализ играл решающую роль в процессе перехода от химических систем к биологическим, т.е. на предбиотической стадии эволюции, в настоящее время подтверждается многими данными и аргументами. Наиболее убедительные результаты связаны с опытами по самоорганизации химических систем, которые наблюдали наши ученые Борис Павлович Белоусов и Алексей Михайлович Жаботинский. Их трудами была открыта колебательная химическая реакция. Б.П.Белоусов сделал простой эксперимент. Он приготовил раствор, состоящий из лимонной кислоты (2,0 г.), серной кислоты (1:3) и 20 мл воды. Раствор периодически менял окраску: становился то желтым, то бесцветным. Впервые был открыт «химический маятник». Хотя на несколько лет это открытие было предано забвению, однако в 1970г. А.М.Жаботинский повторил этот опыт и подтвердил открытие «химического маятника». Такие реакции сопровождаются образованием специфических пространственных и временных структур за счет поступления новых и удаления использованных химических реагентов. Однако в отличие от самоорганизации открытых физических систем в указанных химических реакциях важное значение приобретают каталитические процессы. Роль этих процессов усиливается по мере усложнения состава и структуры химических систем.

  • 1127. Закони Менделя. Природа генів
    Контрольная работа пополнение в коллекции 17.03.2011

    Загальним предком людиноподібних мавп і самого високоорганізованого в загоні приматів сімейства гоминід (людей) була одна з гілок вузьконосих мавп. Якнайдавніші представники цієї гілки вже пересувалися по землі на задніх кінцівках, допомагаючи собі передніми. Більш менш випрямлене положення тіла і перенесення центру тяжкості в основному на задні кінцівки різко змінило співвідношення між всіма органами тварини: грудна клітка ставала ширше і коротше; хребетний стовп поступово втрачав форму дуги, властиву всім тваринам, що пересуваються на чотирьох ногах, і набував S-образную форму, що додавало йому гнучкість. Рухи передніх кінцівок сталі вільнішими і різноманітними. Це виявилося дуже корисним, оскільки полегшило добування їжі. На ранніх етапах еволюції приматів наші віддалені предки жили на деревах. Проте безпосередніми предками гоминід були наземні двоногі мавпи. Перехід до наземного способу життя здійснився задовго до появи перших гоминід. Перехід до прямоходінню, що звільнив руку від участі в пересуванні тіла, - лише одне і далеке не єдине. умова перетворення нашого далекого предка в людину. Не менше важливим був і стадний спосіб життя, при якому слабкість однієї особини компенсувалася зусиллями стада, що спільно обороняється, а досвід, придбаний індивідуумом, швидко ставав надбанням інших членів стада. Високий рівень розвитку мозку і психіки, використовування різних предметів як знаряддя для полювання і захисту від ворогів сталі найголовнішими передумовами олюднення, основою для розвитку мислення і трудової діяльності. Перш ніж людина остаточно виділилася з світу тварин, пройшов тривалий період часу.

  • 1128. Закономерности извлечения растворимых в воде металлов углеродным сорбентом Техносорб. Извлечение алюминия
    Статья пополнение в коллекции 12.01.2009

    В последнее время в связи с повсеместным ужесточением требований к качеству воды хозяйственно-бытового назначения многие ставшие классическими методы водоподготовки не могут обеспечить необходимую глубину очистки природных и сточных вод или являются нерентабельными с экономической точки зрения. Поэтому большое внимание исследователи уделяют поиску и разработке новых, нетрадиционных способов удаления токсичных веществ различного происхождения из воды. Достаточно перспективным и уже применяемым на практике является сорбционный метод очистки, удачно сочетающий высокую, практически недостижимую другими способами, степень извлечения растворенных примесей и высокую производительность процесса очистки при относительно небольших материальных и энергозатратах. Немаловажным достоинством сорбционной технологии является простота аппаратурного оформления и возможность полной или частичной автоматизации всего процесса в целом, а также отдельных его частей. Следует отметить, что традиционно используемые в сорбционной практике микропористые активные угли обладают рядом недостатков, сдерживающих более широкое применение сорбционных методов при водоподготовке. К наиболее существенным из них следует отнести неправильную форму гранул, создающую повышенное гидродинамическое сопротивление, их малую механическую прочность, сокращающую время непрерывной работы сорбционной установки, и замедленную кинетику извлечения примесей из растворов. В настоящее время ассортимент углеродных материалов существенно расширился за счет появления нового класса синтетических материалов на основе пироуглерода, получаемых путем высокотемпературного скоростного пиролиза углеводородов с последующей активацией и химической модификацией поверхности [1]. От традиционных активных углей синтетические материалы отличаются высокой механической прочностью, сферической формой гранул, развитой удельной поверхностью с преобладанием микро- и мезопор и возможностью регулирования структурно-дисперсных характеристик поверхности на этапе получения углеродного материала. Указанные свойства открывают широкие перспективы для потенциального использования синтетических углеродных материалов в различных областях науки и техники, в том числе и в процессах сорбционной очистки воды.

  • 1129. Закономерности индивидуального развития. Особенности онтогенеза человека
    Информация пополнение в коллекции 16.06.2012

    Взаимоотношения материнского организма и плода во внутриутробном периоде. Индивидуальная история особи начинается в тот момент, когда происходит зачатие - слияние мужской и женской половых клеток и образование зиготы. Зигота у всех живородящих существ, включая человека - это уже организм, но еще не особь, поскольку она не может существовать самостоятельно, вне материнского тела. Питание такое существо получает вначале за счет диффузии из окружающей его жидкости. На этом этапе своего развития существо называется эмбрионом. Вскоре, однако, ему требуется значительное увеличение потоков питательных веществ и кислорода, происходит формирование плаценты - специального сосудистого сплетения, которое обеспечивает тесную связь между организмом матери и ее развивающимся потомком. Живое существо в таком состоянии называется плодом. Плод развивается благодаря тому, что имеет самую тесную гуморальную связь с материнским организмом, получая от него все необходимые питательные вещества, а также многие информационные молекулы, которые существенно влияют на состояние организма плода. Со своей стороны, плод также оказывает влияние на материнский организм, причем иногда между ними даже возникают острые противоречия (например, иммунная несовместимость групп крови), способные повредить как материнскому организму, так и плоду. При этом плод нельзя рассматривать как какой-либо орган или вырост материнского организма: никаких нервных связей между организмом матери и плодом нет. Он имеет вполне самостоятельную, замкнутую кровеносную систему, а взаимодействие (обмен веществ) материнского организма и плода осуществляется через плаценту - специальное образование, в котором кровеносные капилляры матери и плода на большой поверхности разделяются лишь тонким слоем ткани, составляющим плацентарный барьер. Через этот барьер свободно проникают все необходимые плоду питательные вещества, продукты метаболизма, а также разнообразные молекулы биологически активных веществ (БАВ).

  • 1130. Закономерности передачи генетической информации
    Информация пополнение в коллекции 02.02.2010

    Проведенные эксперименты по наблюдению двух пар различий (круглые и шероховатые семена, желтые и зеленые семена) в дигибридном скрещивании показали, что гибриды F1 в этих скрещиваниях похожи на гибриды F1, возникающие при моногибридных скрещиваниях. Поскольку круглая форма семян является доминантной по отношению к шероховатой, а желтая окраска семян доминантной по отношению к зеленой, гибриды F1 давали круглые семена, имеющие желтую окраску. Проведя затем скрещивание гибридов F1 друг с другом или допуская самоопыление, Г. Мендель получил гибриды F2, от которых было исследовано 656 семян (бобов). Изучив форму и окраску семян, полученных от гибридных растений F2, он обнаружил, что раздельно как по форме, так и по окраске семян фенотипическое расщепление (отношение количества семян с доминантными признаками к количеству семян с рецессивными признаками) проявляется в отношении 3 : 1 или ¾ : 1/4, ибо из 556 семян для 432 была характерна круглая форма (76,08%) и для 133 - шероховатая (23,92%), тогда как из этого количества семян для 416 была присуща желтая окраска (74,82%), а для 140 зеленая (25,18%). Такой характер расщепления по форме и по окраске семян следовало ожидать, исходя из результатов моногибридных скрещиваний. Однако в данном случае вопрос заключался в другом: является ли расщепление одной пары альтернативных признаков (круглая и шероховатая форма семян) независимым от расщепления другой пары признаков (желтая и зеленая окраска семян) или эти пары признаков зависимы, тесно связаны между собой? Аналогичный вопрос можно было поставить и по-другому: всегда ли круглая форма семян сочетана с желтой окраской их, а шероховатая форма семян с зеленой окраской или же возможно появление семян с новыми комбинациями этих признаков?

  • 1131. Закономерности развития науки. Концепции Т. Куна и И. Лакатоса
    Контрольная работа пополнение в коллекции 22.12.2010

    В наше время стандартная модель научного знания выглядит примерно так. Познание начинается с установления путем наблюдения или экспериментов различных фактов. И если в них обнаруживается повторяемость или регулярность, то в принципе можно утверждать, что найдено первичное эмпирическое обобщение. Но рано или поздно, как правило, обнаруживаются факты, которые не вписываются в обнаруженную регулярность. Тогда начинается перестройка известной реальности, чтобы эти факты вписались в единую схему и перестали противоречить найденной эмпирической закономерности. Обнаружить новую схему наблюдением нельзя. Первоначально ее надо сотворить умозрительно в виде теоретической гипотезы. Если гипотеза удачна и снимает найденное между фактами противоречие, а еще лучше позволяет предсказывать получение новых фактов, это значит, что родилась новая теория, найден теоретический закон. К примеру, долгое время в теории наследственности считалось, что наследуемые признаки должны усредняться (при скрещивании белого цветка с красным полученный гибрид должен быть розовым). На основе этой теории британский инженер Ф. Дженкин математическим путем рассчитал, что любой самый выгодный признак, имеющийся в организме, рано или поздно должен раствориться, исчезнуть. Эту проблему успешно решил Г.Мендель. Он предложил гипотезу: наследование носит не промежуточный характер, а дискретный, наследуемые признаки передаются дискретными частицами. Сегодня мы их называем генами. При передаче факторов наследственности от поколения к поколению идет их расщепление, а не смешивание. Наблюдение показывает, что за наследование признака отвечает не один, а множество генов. В результате гипотеза Дженкина не подтвердилась.

  • 1132. Закономерности формирования и динамики авифауны гор Азиатской Субарктики
    Информация пополнение в коллекции 03.09.2010

    Проведенный нами анализ видового состава авифаун отдельных регионов Евразии, выявил, что в цепи ГАС, в отличие от равнин, центр относительного видового разнообразия смещен восточнее Урала и расположен на плато Путорана. К западу, в сторону Приполярного и Полярного Урала, видовое разнообразие авифауны снижается на 10% (гнездовой на 6%), к востоку, в сторону Верхоянья, хребта Черского и Колымского нагорья - на 15% (гнездовой на 3-5%), и далее, в Корякском нагорье на 26% (гнездовой на 22%). Центры видового разнообразия авифауны как в горах Азиатской Субарктики (Путорана), так и в горах Южной Сибири (Алтай-Саянский регион) проецируются на меридиональный внутриконтинентальный трансект по 90-100º в.д. (Рогачева, 1988; Романов, 1996; Бисеров, 2006; Баранов, 2007). Выявленное повышенное видовое разнообразие авифауны Путорана соответствует особенностям его положения в пределах Енисейской зоогеографической границы, сформировавшейся по линии ледникового разрыва авифаунистических комплексов и ареалов видов (Рогачева, 1988). Пограничное положение между темнохвойной западно-сибирской тайгой и светлохвойной тайгой Средней и Восточной Сибири обусловливает переходный характер путоранской авифауны и ее повышенное видовое богатство. В составе этой авифауны находятся виды и подвиды - типичные представители различных орнитокомплексов (таежных и тундровых), господствующих западнее или восточнее Енисейской границы и не распространяющихся далее от нее. Золотистая ржанка, серая ворона, камышевка-барсучок и серая мухоловка находят на плато Путорана восточный предел распространения. Такие виды, как клоктун, горбоносый турпан, азиатская бурокрылая ржанка, сибирский пепельный улит, кроншнеп-малютка, белопоясничный стриж, американский конек, сибирский жулан, соловей-свистун, черная ворона, дрозды сибирский и Науманна, бурый дрозд, сибирская чечевица не проникают западнее Енисейской зоогеографической границы, а территория плато Путорана составляет часть западной периферии их ареала. Последних видов в путоранской авифауне несколько больше, что свидетельствует в пользу преобладающего влияния на фауну Путорана орнитокомплексов, распространенных восточнее Енисейской зоогеографической границы и самого плато, за счет которых в основном и поддерживается повышенное видовое богатство авифауны обсуждаемого региона (Романов, 1996). У большого числа видов и западных, и восточных в районе плато Путорана проходит граница подвидов, имеющих западное и восточное распространение (Степанян, 2003). Таковы Delichon urbica urbica (L.) и Delichon urbica lagopoda (Pall.), Motacilla alba dukhunensis Sykes и Motacilla alba ocularis Swinh., Phylloscopus collybita fulvescens Sever. и Phylloscopus collybita tristis Blyth., Phylloscopus trochiloides viridanus Blyth. и Phylloscopus trochiloides plumbeitarsus Swinh., Pinicola enucleator enucleator (L.) и Pinicola enucleator kamtschatkensis (Dub.). Случаев одновременного распространения соответствующих пар подвидов на территории Путорана пока выявлено немного (Романов, 1996, 2004, 2006; Романов, Голубев, 2007). Это доказано лишь в отношении Motacilla alba dukhunensis и Motacilla alba ocularis. Для воронка и теньковки зарегистрированы только восточные подвиды (Delichon urbica lagopoda (Pall.) и Phylloscopus collybita tristis Blyth.), для щура только западный подвид (Pinicola enucleator enucleator (L.).

  • 1133. Законы Менделя
    Доклад пополнение в коллекции 12.01.2009

    Это не означает, что идеи Менделя были приняты безоговорочно. В научном мире долго обсуждалась теория преформизма, согласно которой яйцеклетка и сперматозоид каким-то образом содержат в себе взрослый организм в миниатюре. Например, Антоний Ван Левенгук (Anton van Leeuwenhoek, 16321723), ученый, который ввел в научный обиход микроскоп, считал, что внутри каждого сперматозоида уже содержится крохотный человеческий организм, а яйцеклетка нужна лишь для обеспечения его питательными веществами, необходимыми для роста. Вопрос заключался в том, что управляет развитием эмбриона внутренние, наследственные факторы, как полагал Мендель, или внешние факторы окружающей среды, которые могут, например, влиять на питательные вещества яйцеклетки. Сегодня, когда ученые уже могут во всех деталях проследить путь развития организма из оплодотворенной яйцеклетки, выясняется, что внешние факторы, например вещества, оказывающие внутриутробное воздействие на эмбрион, могут вызывать «включение» определенных генов и таким образом влиять на развитие организма.

  • 1134. Законы наследственности
    Доклад пополнение в коллекции 12.01.2009

    В соответствии с молекулярной биологией, белки - это очень сложные макромолекулы, структурными элементами которых являются аминокислоты. Структура белка задается последовательностью образующих его аминокислот. При этом из 100 известных в органической химии аминокислот в образовании белков всех организмов используется только двадцать. До сих пор не ясно, почему именно эти 20 аминокислот синтезируют белки органического мира. Вообще, в любом существе, живущем на Земле, присутствуют 20 аминокислот, 5 оснований, 2 углевода и 1 фосфат.

  • 1135. Законы наследственности
    Курсовой проект пополнение в коллекции 26.08.2012

    Сцепленное наследование - организм любого вида имеет большое разнообразие признаков, которое обеспвг чивается тысячами генов. В то же время число хромосом невелико, так у человека их всего 23 пары. Следовательно, в каждой хромосоме располагаются сотни и тысячи генов. Наследование признаков, гены которых находятся в одной хромосоме, исследовал американский генетик Т. Морган. Гены, расположенные в одной хромосоме, называют группой сцепления. Количество групп сцепления в клетке равно гаплоидному набору хромосом. Закон сцепленного наследования, открытый Морганом, гласит: гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Дальнейшие исследования Моргана показали, что сцепление не всегда бывает абсолютным. Причина тому - кроссинговер (обмен участками между гомологичными хромосомами), который происходит в профазе первого деления мейоза. Кроссинговер нарушает группы сцепления генов и ведет к появлению особей с перекомбинацией признаков. Частота кроссинговера зависит от расстояния между генами: чем ближе располагаются гены в хромосоме, тем меньше вероятность кроссинговера между ними и наоборот. Эта зависимость используется, для составления генетических карт хромосом, где по вероятности кроссинговера рассчитывается положение генов, в хромосоме. Расстояние между генами определяется по формуле: X = (A + C)/N x100, где X - расстояние между генами (в морга-нидах), А и С - количество кроссовертных особей, N - общее число особей.

  • 1136. Законы сохранения и принципы, действующие в природе
    Контрольная работа пополнение в коллекции 27.06.2010

    Так, в макромире материальные объекты имеют резко выраженную прерывную, корпускулярную или непрерывную, волновую природу и их движение подчиняется динамическим законам классической механики. Для явлений микромира, напротив, характерна тесная связь корпускулярных и волновых свойств, которая находит свое выражение в статистических законах квантовой механики. Своеобразная граница раздела макро- и микромира была установлена в связи с открытием теории, названной постоянной Планка. Существенным аспектом этой новой константы явилась «конечность взаимодействия», означавшая, что любые взаимодействия между объектами в микромире (в т. ч. между прибором и микрочастицей) не могут быть меньше значения кванта действия. Специфика макро- и микромира находит свое отражение в познании, приводит к ограничению сферы применимости старых физических теорий и возникновению новых (теория относительности, квантовая механика, физика элементарных частиц). Современные «физические идеалисты», абсолютизируя различие макро- и микромира, особенности их познания, приходят к отрицанию объективности и познаваемости микромира. В действительности же наука показывает тесную связь между макро- и микромиром и обнаруживает, в частности, возможности появления макроскопических объектов при столкновении микрочастиц высокой энергии. Проникновение физики в мир атома, а затем атомного ядра и элементарных частиц явилось блестящим подтверждением и обогащением принципов диалектического материализма.

  • 1137. Залози внутрішньої секреції
    Информация пополнение в коллекции 05.12.2009

    Канадський дослідник Г. Сельє створив вчення про стрес (від англ. stress напруження). При стресі виникає ряд пристосувальних змін, які дістали назву загального адаптаційного синдрому. Це зміни, спрямовані на збереження життя організму, властиві всім видам стресу. Розвиток загального адаптаційного синдрому неможливий без участі гіпофіза і кори надниркових залоз. Якщо у тварини видалити гіпофіз або надниркову залозу, то вона загине після впливу надзвичайного подразника. Розрізняють три стадії розвитку адаптаційного синдрому: І реакція тривоги, супроводжується посиленим виділенням глюкокортикоїдів і адрекокортикотропного (АКТГ) гормона в кров, це сприяє пристосуванню організму до дії подразника; II резистентності, тобто стійкості організму до дії подразника, характеризується збільшенням маси (гіпертрофією) передньої частки гіпофіза і надниркових залоз, підвищеною секрецією адренокортикотропного гормона і глюкокортикоїдів, що сприяє розвиткові стійкості організму до несприятливих впливів; III виснаження, характеризується тим, що залоза уже не може виділяти достатню кількість захисних гормонів. Це порушує процес пристосування, і стан організму погіршується, може настати його загибель.

  • 1138. Заметки о размножении полиаканта
    Доклад пополнение в коллекции 12.01.2009

    Между тем наблюдения в течение длительного времени позволили нам обнаружить в размножении этой рыбки интереснейшую, не свойственную обычно лабиринтовым особенность, делающую полиаканта интересным не только для пытливых аквариумистов, но и для исследователей. Обнаружить эту особенность полиаканта удалось совсем случайно. Однажды самец полиаканта начал зимой строить гнездо. Сам факт постройки гнезда в это время года не вызвал удивления. Необычным было то. что место для гнезда рыбка выбрала... глубоко под водой между двумя горшками с растениями. Поскольку в этом пространстве маленькому строителю закрепить пузырьки не удавалось, мы предложили ему перевернутый горшок с отбитым краем. Такой поставленный на дно домик, оказалось, вполне устроил рыбок. Они постоянно поднимались за воздухом и вскоре в горшке было построено гнездо, сохранившее в общем те же размеры, что и обычное, плавающее на поверхности. Впоследствии полиаканты метали икру в установленных на дне горшочках не раз, причем такое гнездо устраивала не одна пара. Нам удалось заставить рыбок устроить гнездо в помещенном в тень на дно аквариума стакане. Брачные игры в этом тесном убежище, как, видимо, и в горшках, не происходили, но акт метки, уход самца за потомством и выклев мальков происходили так же, как и в обычных условиях. Уровень воды при этом колебался от 10 до 35см. A промежутках между метками рыбки постоянно находятся в горшках-пещерках, появляясь лишь за кормом или чтобы пополнить запасы воздуха. Исследуя в ряде случаев эти подводные домики полиакантов, мы всегда находили там пенное "гнездо", даже в тех случаях, когда условия совершенно не соответствовали метке (низкая температура, раздельное содержание полов). Все это заставляет сделать вывод, что и в природе полиаканты устраивают гнезда и мечут икру не только на поверхности воды, что свойственно большинству лабиринтовых, но и в глубине среди корней растений, под камнями, в пещерках. В ихтиологической литературе до сих пор нет твердо установившегося взгляда о назначении пенного гнезда лабиринтовых и некоторых других рыбок. Наряду с очевидным назначением - охраной икры от врагов - высказываются предположения, что пузырьки воздуха из гнезда улучшают режим дыхания икринок, что они способствуют улучшению светового режима икринок, которым нужен сильный, но рассеянный свет. Описанное выше поведение полиакантов позволяет считать последнее предположение неверным, т.к. гнезда по тому же типу, что и на поверхности, устраивались в темноте. Наоборот, утверждение, что пузырьки из гнезда улучшают дыхание икринок, становится очевидным. Эти же пузырьки способствуют лучшему режиму дыхания и мальков, которые, как известно, в первые недели своей жизни не обладают еще лабиринтовым аппаратом. Наличие "гнезда" из пены в периоды между меткой икры дает повод считать, что заключенный в пузырьках запас воздуха позволяет полиаканту реже всплывать к поверхности за необходимым ему атмосферным воздухом и тем самым находиться в случае опасности в более выгодных условиях, чем другие лабиринтовые, вынужденные даже при опасности стремиться к поверхности воды.

  • 1139. Замиокулькас - африканская экзотика в нашем доме
    Статья пополнение в коллекции 12.01.2009

    Поливают замиокулькас, как и другие суккуленты (наличие листочков не должно вводить вас в заблуждение), то есть, редко, но обильно, дождавшись полного просыхания почвы плюс еще несколько дней. В любом случае, даже если про него надолго забыть, он не пострадает: ведь запасы воды есть в клубне. В зимнее время, конечно же, поливы сокращают до минимума. Опрыскивать растение не нужно, но периодически необходимо осторожно протирать от пыли хрупкие листочки мягкой тканью, а летом не повредит и теплый душ. В период активной вегетации изредка можно подкармливать удобрениями для кактусов и суккулентов: весной-летом раз в 3-4 недели, зимой при теплом содержании раз в 5-6 недель.

  • 1140. Заповедники Дальнего Востока. Сихотэ- Алинский заповедник
    Информация пополнение в коллекции 12.09.2010