Химия
-
- 441.
Кобальт и синтез его соли
Контрольная работа пополнение в коллекции 12.06.2012 Конфигурация внешних электронных оболочек атома Кобальта 3d74s2. В соединениях Кобальт проявляет переменную валентность. В простых соединениях наиболее устойчив Со(П), в комплексных - Со(III). Для Со(I) и Co(IV) получены только немногочисленные комплексные соединения. При обыкновенной температуре компактный Кобальт стоек против действия воды и воздуха. Мелко раздробленный Кобальт, полученный восстановлением его оксида водородом при 250 °С (пирофорный Кобальт), на воздухе самовоспламеняется, превращаясь в СоО. Компактный Кобальт начинает окисляться на воздухе выше 300 °С; при красном калении он разлагает водяной пар: Со + Н2О = СоО + Н2. С галогенами Кобальт легко соединяется при нагревании, образуя галогениды СоХ2. При нагревании Кобальт взаимодействует с S, Se, P, As, Sb, С, Si, В, причем состав получающихся соединений иногда не удовлетворяет указанным выше валентным состояниям (например, Со2Р, Co2As, CoSb2, Со3С, CoSi3). В разбавленных соляной и серной кислотах Кобальт медленно растворяется с выделением водорода и образованием соответственно хлорида СоCl2 и сульфата CoSO4. Разбавленная азотная кислота растворяет Кобальт с выделением оксидов азота и образованием нитрата Co(NO3)2. Концентрированная HNO3 пассивирует Кобальт. Названные соли Со (II) хорошо растворимы в воде [при 25°С 100 г воды растворяют 52,4 г СоCl2, 39,3 г CoSO4, 136,4 г Co(NO3)2]. Едкие щелочи осаждают из растворов солей Со2+ синий гидрооксид Со(ОН)2, которая постепенно буреет вследствие окисления кислородом воздуха до Со(ОН)3. Нагревание в кислороде при 400-500 °С переводит СоО в черную закись-окись Со3О4, или СоО·Со2О3 - соединение типа шпинели. Соединение того же типа CoAl2О4 или СоО·Al2О3 синего цвета (тенарова синь, открытая в 1804 году Л. Ж. Тенаром) получается при прокаливании смеси СоО и Al2О3при температуре около 1000 °С
- 441.
Кобальт и синтез его соли
-
- 442.
Кокс и коксование
Информация пополнение в коллекции 12.01.2009 До недавнего времени в топливном балансе страны огромная доля приходилась на нефть. В связи с развитием энергоснабжения осуществляется перевод энергетики с использованием нефти и нефтепродуктов в качестве топлива на широкое применение в этих целях природного газа, угля, на использование атомной энергии. Это значит, что тяжелые остатки переработки нефти-мазуты будут более полно перерабатываться в светлые нефтепродукты, необходимые для современного органического синтеза. Химической науке предстоит задача изыскать более эффективные пути переработки нефти, природного и попутных газов, угля, сланцев, а также усовершенствовать существующие с целью более полного и комплексного использования природного углеводородного сырья.
- 442.
Кокс и коксование
-
- 443.
Коксование каменных углей
Информация пополнение в коллекции 22.12.2011
- 443.
Коксование каменных углей
-
- 444.
Коксохимическое производство
Информация пополнение в коллекции 09.12.2008 Современные печи для коксования углей представляют собой горизонтальные прямоугольные камеры, выложенные из огнеупорного материала. Камеры течей обогреваются через боковые стены. Печи располагаются в ряд и объединяются в батареи для уменьшения потери тепла и достижения компактности. В типовую батарею печей с шириной камер 410 мм входят обычно 65 печей, а в батарею большой емкости с камерами шириною 450 мм входят 77 печей. Обычные камеры имеют полезный объем 2021,6 м3, а печи большой емкости30 м3. Ширина печей более 450 мм нецелесообразна из-за ухудшения качества кокса (повышения истираемости). Для облегчения выталкивания кокса из камеры коксования ширину камеры со стороны выдачи кокса делают на 4050 мм шире, чем с машинной стороны. Таким образом, камера имеет вид конуса. Основные, конструктивные элементы коксовой батареи показаны на рис. 4. За основные элементы батареи надо принять следующие: фундамент, регенераторы, корнюрную зону, зону обогревательных простенков, перекрытия простенков и перекрытия камер.
- 444.
Коксохимическое производство
-
- 445.
Коксохимия
Информация пополнение в коллекции 12.01.2009 До недавнего времени в топливном балансе страны огромная доля приходилась на нефть. В связи с развитием энергоснабжения осуществляется перевод энергетики с использованием нефти и нефтепродуктов в качестве топлива на широкое применение в этих целях природного газа, угля, на использование атомной энергии. Это значит, что тяжелые остатки переработки нефти-мазуты будут более полно перерабатываться в светлые нефтепродукты, необходимые для современного органического синтеза. Химической науке предстоит задача изыскать более эффективные пути переработки нефти, природного и попутных газов, угля, сланцев, а также усовершенствовать существующие с целью более полного и комплексного использования природного углеводородного сырья.
- 445.
Коксохимия
-
- 446.
Колебательные химические реакции
Курсовой проект пополнение в коллекции 09.12.2008 Реакцию Белоусова, как отмечено выше, детально изучил А. М. Жаботинский и его коллеги. Они заменили лимонную кислоту малоновой. Окисление малоновой кислоты не сопровождается образованием пузырьков СО2, поэтому изменение окраски раствора можно без помех регистрировать фотоэлектрическими приборами. В дальнейшем оказалось, что ферроин и без церия служит катализатором этой реакции. Б. П. Белоусов уже в первых опытах заметил ещё одно замечательное свойство своей реакции: при прекращении перемешивания изменение окраски в растворе распространяется волнами. Это распространение химических колебаний в пространстве стало особенно наглядным, когда в 1970 г. А. М. Жаботинский и А. Н. Заикин налили реакционную смесь тонким слоем в чашку Петри. В чашке образуются причудливые фигуры концентрические окружности, спирали, «вихри», распространяющиеся со скоростью около 1 мм/мин. Химические волны имеют ряд необычных свойств. Так, при столкновении они гасятся и не могут проходить сквозь друг друга.
- 446.
Колебательные химические реакции
-
- 447.
Колебательные химические реакции - как пример самоорганизации в неживой природе
Информация пополнение в коллекции 09.12.2008 В современном естествознании утвердился принцип глобального эволюционизма, согласно которому материя, Вселенная в целом и во всех ее элементах не могут существовать вне развития: «Все существующие есть результат эволюции». Идея эволюции, впервые прозвучавшая в XIX в. в учении Ч. Дарвина «О происхождении видов», постепенно проникла и заняла прочные позиции в космологии, физики, геологии, химии. В 70-х г. XX в. появилось новое научное направление синергетика теория самоорганизации, претендующая на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация, как в живой, так и в неживой природе. По определению основоположника этого направления в науке немецкого физика Германа Хакена, «самоорганизация спонтанное образование высокоупорядоченных структур из зародышей или даже хаоса». Следует отметить, что в классической науке (XIX в.) господствовало убеждение, что материи изначально присуща тенденция к разрушению всякой упорядоченности, стремление к исходному равновесию, что в энергетическом смысле означало неупорядоченность, т.е. хаос. Такой взгляд на вещи сформировался под воздействием образцовой физической дисциплины равновесной термодинамики. Дальнейшее развитие науки доказало, что материи присуща не только разрушительная, но и созидательная тенденция. Она способна самоорганизовываться и самоусложняться. Примерами таких процессов является эволюция Вселенной от элементарных частиц до сегодняшнего состояния, формирование живого организма, механизм действия лазера, рост кристаллов, рыночная экономика и т. д.
- 447.
Колебательные химические реакции - как пример самоорганизации в неживой природе
-
- 448.
Количественный анализ
Контрольная работа пополнение в коллекции 04.10.2010 и, следовательно, величина предельного тока будет зависеть от концентрации в растворе соли Fe2+ .
- Электрохимически активен только титрант (реагент), т.е. он окисляется или восстанавливается на электроде: например, титрование солей Zn2+, Cd2+, Mn2+, Pb2+, Cu2+ ферроцианидом при значении потенциала платинового вращающегося электрода, равном +0,8 В (рис.1б). В этом случае на электроде протекает реакция окисления ферроцианид-ионов, предельный ток пропорционален концентрации ферроцианида в растворе.
- Восстанавливаются или окисляются на электроде два вещества - определяемое соединение и титрант. Например, титрование солей Cu2+, Cd2+, Zn2+ ортооксихинолином при значении потенциала ртутного капающего электрода равном -1,6 В (рис.1в). В этом случае на электроде до момента эквивалентности восстанавливаются ионы Cu2+, Cd2+, Zn2+, а ортооксихинолин - после момента эквивалентности. Т.о., в этом случае величина предельного тока будет прямо пропорциональна концентрации определяемых ионов Cu2+, Cd2+, Zn2+ в растворе - до точки эквивалентности - и концентрации в растворе ортооксихинолина - после точки эквивалентности.
- Электрохимически активны как определяемое вещество, так и титрант, причем одно восстанавливается на электроде, другое - окисляется. Например, титрование соли Fe3+ раствором TiCl3 при значении потенциала ртутного электрода, равном -0,25В. Точка эквивалентности обнаруживается вследствие различия угла наклона прямых id - v мл реагента, описывающих изменение тока до и после момента эквивалентности; это связано, с различным числом электронов, принимающих участие в электродных реакциях определяемого вещества и титранта, а также с различием в коэффициентах диффузии этих веществ (рис.1г). В приведенном примере до момента эквивалентности на электроде восстанавливаются ионы Fe3+, величина предельного тока пропорциональна концентрации соли Fe3+ в растворе. После момента эквивалентности на электроде протекает процесс окисления соли титана (III), величина предельного тока пропорциональна концентрации последней в растворе.
- Электрохимически активен только продукт химической реакции, т.е. на электроде протекает восстановление или окисление образующегося в результате химической реакции соединения (рис.1д). Пример: титрование соединений пятивалентного мышьяка иодидами в кислой среде: в результате химической реакции образуется йод, который восстанавливается на вращающемся платиновом электроде. Предельный ток в этом случае прямо пропорционален концентрации йода, образующегося в растворе.
- Реагирующие вещества и продукты реакции электрохимически неактивны. Тогда специально в раствор вводится электрохимически активное вещество - «полярографический индикатор». Пример: титрование с «полярографическим индикатором» - солью Fe3+, вводимым перед титрованием соединений алюминия, магния или циркония, раствором фторида; электрод - вращающийся платиновый, значение потенциала равно 0,0 В и отвечает предельному току восстановления активированных ионов Fe3+. В этом случае до точки эквивалентности происходит взаимодействие ионов фтора с определяемым веществом с образованием прочных соединений; только после точки эквивалентности ионы фтора смогут взаимодействовать с Fe3+ (полярографическим индикатором), поскольку образующийся фторидный комплекс менее устойчив. В результате падения концентрации ионов Fe3+ после точки эквивалентности величина предельного тока начинает убывать (рис.1е).
- 448.
Количественный анализ
-
- 449.
Коллигативные свойства растворов, их роль в повседневной жизни
Информация пополнение в коллекции 19.12.2011 Если к раствору, находящемуся в сосуде с полупроницаемыми стенками, приложить давление большее, чем его осмотическое давление, то из раствора через полупроницаемую перегородку будет вытесняться растворитель, а растворенное вещество останется в более концентрированном растворе. Этот метод удаления растворителя получил название обратного осмоса или гиперфильтрации. Он весьма перспективен для опреснения соленой морской воды. Осмотическое давление морской воды примерно составляет 0,27 МПа. При большем давлении из нее можно отфильтровать чистую воду. В качестве мембран для обратного осмоса морской воды используют полупроницаемые материалы на основе целлюлозы, пористые стекла и пористую керамику.
- 449.
Коллигативные свойства растворов, их роль в повседневной жизни
-
- 450.
Коллоидная химия и поверхностные явления
Информация пополнение в коллекции 25.06.2010 На границе раздела фаз каждая из граничащих фаз имеет избыток потенциальной энергии, который называется поверхностная энергия. Стремление вещества уменьшить поверхностную энергию поверхностное натяжение у. Существует оно потому, что состояние молекулы внутри фазы и на её границе различно:
- Внутри фазы молекула окружена другими такими же молекулами. Силовые поля этих молекул полностью компенсированы друг другом, молекулы связаны между собой одинаково
- На границе раздела фаз молекулы рассматриваемой фазы одновременно взаимодействуют с молекулами как своей, так и другой фазы, причём характер взаимодействия между молекулами разных фаз другой, нежели между молекулами одной фазы. Это приводит к тому, что молекулы рассматриваемой фазы «выталкиваются» из своей фазы в другую или сильнее притягиваются к молекулам другой фазы, чем к «своим» молекулам
- Поверхностное натяжение это величина свободной энергии Гиббса на единицу поверхности вещества. Стремление вещества уменьшить эту величину приводит к самопроизвольному сокращению границы раздела фаз. Примеры: круглая форма капли жидкости при отсутствии воздействий со стороны (в невесомости, при достаточно малом объёме жидкости (поверхностное натяжение сильнее силы тяжести)), коагуляция, коалесценция и др.
- Если площадь поверхности равна Щ, то при Р, Т=const
- 450.
Коллоидная химия и поверхностные явления
-
- 451.
Коллоидные системы в организме и их функции
Информация пополнение в коллекции 09.12.2008 Соединительная ткань является универсальной тканью организма. Она присутствует практически во всех органах, образуя их строму (каркас). Помимо разнообразия клеточных элементов (более 10 разновидностей высокодифференцированных клеток) важной составляющей частью соединительной ткани являются волокна. Основными видами волокон являются коллагеновые, эластические, гиалиновые и другие. Биохимической основой строения волокон являются полимеры белков: коллаген, эластин, гиалин, оссеин. Они, удерживая воду, образуют пространственные структурные сетки, обладая всеми свойствами гелей. Наиболее богато гелевые структуры представлены в хрящах, костной ткани, суставно-связочном аппарате, строме кровеносных сосудов, коже. В их состав входят также такие белковые полимеры как хондроитинсульфат и гиалуроновая кислота. Последняя в совокупности с ферментом гиалуронидазой, изменяющей коллоидные свойства гиалуроновой кислоты, образует динамически функционирующую систему, позволяющую регулировать проницаемость сосудистой стенки и обновлять волокнистые структуры. Белки волокон продуцируются клетками соединительной ткани, к которым относятся также хондроциты, остеобласты и остеокласты. Через соединительнотканные структуры осуществляется целый ряд процессов: транспорт и распределение воды, солей и других веществ, регуляция энзиматических реакций, восстановление тканей, подавление инфекций и многие другие процессы. Соединительная ткань выполняет главную опорную функцию в организме, является основой построения костного скелета, суставов, связок, фасций и стромы внутренних органов. В процессе старения белки волокон теряют свои гидрофильные свойства за счет частичной потери ими четвертичной или третичной структуры. При этом на поверхности белковых молекул уменьшается количество гидрофильных (карбоксильных, амино- и сульфгидрильных) групп, способных в силу электростатических взаимодействий притягивать молекулы воды. Одновременно на их поверхности увеличивается количество гидрофобных (углеводородных) групп. Этот процесс приводит к тому, что тонкие нити соединительнотканных волокон «сшиваются» друг с другом в грубые канаты, и происходит обезвоживание, сжатие и ухудшение питания клеток внутренних органов через соединительную ткань, происходят нарушения их функций. Именно в этом в значительной степени и заключается процесс появления морщин на коже, ее истончение. К настоящему времени многие вопросы, связанные с изучением биохимических, коллоидных и других свойств соединительной ткани, остаются без ответа. Решение их помогло бы добиться значительных успехов в изучении патогенеза и лечении заболеваний опорно-двигательного аппарата, коллагенозов и соединительнотканных опухолей.
- 451.
Коллоидные системы в организме и их функции
-
- 452.
Колонна ректификации для разделения смеси "Этиловый спирт-ацетон"
Дипломная работа пополнение в коллекции 13.10.2011 В среднюю часть колонны поступает подлежащая ректификации смесь F, нагретая до температуры tF. Смесь может подаваться в колонну в виде жидкости, паров или смеси паров и жидкости. При входе сырья в колонну происходит процесс однократного испарения, в результате которого образуются пары состава у*F и жидкость состава х*F, находящиеся в равновесии.
- 452.
Колонна ректификации для разделения смеси "Этиловый спирт-ацетон"
-
- 453.
Комплексные соединения
Контрольная работа пополнение в коллекции 08.11.2009 Полидентатные (циклообразующие) лиманды образуют в ВКС и ХКС обычно четырех- (сравнительно редко), пяти-, шести-, семичленные металлоциклы. Значительно реже осуществляются трехчленные металлоциклы или хелатные циклы с числом членов более семи. ВКС и ХКС чаще всего образуются при реакциях солей металлов с соответствующими нейтральными исходными лимандами или их солями в растворах в подходящих условиях, а также при реакциях внутрисферного замещения и внутрисферного превращения лимандов. ВКС - обычно малорастворимые в воде, часто - окрашенные вещества, могут экстрагироваться (иногда - избирательно) органическими растворителями, не смешивающимися с водой. ХКС обладают различными растворимостью и окраской, зависящими от природы как металла-комплексообразователя, так и лимандов и внешней сферы. ВКС и ХКС более устойчивы термически и при диссоциации в растворах, чем комплексы тех же металлов с монодентатными лимандами, образующими аналогичные координационные связи. Повышенная устойчивость пятичленных металлоциклов, в меньшей мере - шестичленных металлоциклов известна как правило циклов Чугаева: наиболее устойчивы комплексы с пятичленными хелатными циклами, менее устойчивы - соединения с шестичленными хелатными циклами. Соединения с 3-, 4-членными металлоциклами и с циклами, имеющими более 6 членов, обычно гораздо менее устойчивы. Устойчивость ВКС и ХКС растет с увеличением числа металлоциклов в комплексе.
- 453.
Комплексные соединения
-
- 454.
Комплексные соединения в аналитической химии
Курсовой проект пополнение в коллекции 20.03.2011 Для комплексных соединений, содержащих во внутренней сфере различные лиганды, характерна геометрическая изомерия, наблюдаемая в тех случаях, когда при одинаковом составе внутренней сферы лиганды в ней располагаются по-разному относительно друг друга. Если два одинаковых лиганда расположены рядом, то такое соединение называется цис-изомером, если эти лиганды расположены по разные стороны от комплексообразователя, то это трансизомер. Например, комплекс [Pt(NН3)2Сl2]. Геометрические изомеры комплексных соединений различаются не только по физическим и химическим свойствам, но и по биологической активности. Так, цис-изомер комплекса [Pt(NН3)2Сl2] проявляет ярко выраженную противоопухолевую активность, а трансизомер - нет. Следовательно, не только состав, но и геометрия внутренней. Эффективность донорно-акцепторного взаимодействия лиганда и комплексообразователя, а следовательно, и прочность связи между ними определяются их поляризуемостью, т. е. способностью трансформировать свои электронные оболочки под внешним воздействием. По этому признаку реагенты подразделяются на "жесткие", или малополяризуемые, и "мягкие" - легкополяризуемые. Поляризуемость атома, молекулы или иона прежде всего зависит от размера молекулы и числа электронных слоев. Чем меньше радиус и число электронов у частицы, тем менее она поляризуема. Частицы с большим радиусом и большим числом электронов, наоборот, легко поляризуются. По этим признакам можно расположить в ряд комплексообразователи и лиганды, участвующие в процессах метаболизма:
- 454.
Комплексные соединения в аналитической химии
-
- 455.
Комплексные соединения, их биологическая роль (на примере хлорофилла и гемоглобина)
Информация пополнение в коллекции 12.01.2009 Под влиянием кристаллического поля N-донорных атомов порфирина, а также аксиальных лигандов (Im и О2 ) t42ge2g конфигурация Fe (II) превращается в t62ge0g. На вакантные eg -орбитали переходят сигма-электроные пары имидазола и кислорода. Считают, что молекула О2 связывается в шестом координационном месте с Fe (II) также за счет дативной ?-связи. Координированный ион железа поставляет пару электронов, находящуюся на его dyz (или dxz)-орбитали, на вакантную (разрыхляющую) pz-орбиталь молекулы О2. Образованию ?-связи Fe (II) > О2 благоприятствует высокая электроннодонорная способность ?-системы и проксимального имидазола. Атом железа после оксигенации входит в координационную плоскость N4 и располагается ценртосимметрично. Структура белка в гемоглобине такова, что он экранирует подход к атому Fe (II) всех других молекул, имеющихся в крови, и своевременно регулирует его донорно-акцепторные свойства. Исключение составляют токсиканты яды крови, к которым относятся монооксид углерода, оксиды азота, метиленовый синий. Проникая с атмосферным воздухом в легкие, монооксид углерода быстро преодолевает капиллярно- альвеолярную мембрану, растворяется в плазме крови, диффундирует в эритроциты и вступает в обратимое химическое взаимодействие как с окси-, так и с дезоксигемоглобином:
- 455.
Комплексные соединения, их биологическая роль (на примере хлорофилла и гемоглобина)
-
- 456.
Комплексные соединения. Получение и свойства
Контрольная работа пополнение в коллекции 14.12.2011 1.метод валентных связей - строится на позиции ковалентности химической связи между комплексообразователем и лигандами, так как донорно - акцепторная связь является частным случаем ковалентной связи. Этот метод объясняет взаимодействие между комплексообразователем и лигандами как донорно - акцепторное взаимодействие, при котором центральный атом имеет на внешнем квантовым уровне ряд свободных орбиталей и выступает акцептором, а каждый лиганд содержит одну неподеленную пару электронов и является донором. При взаимодействии лигандов с комплексообразователем последний подвергается гибридизации. При этом тип гибридизации определяет геометрическую конфигурацию комплекса. Следовательно, этот метод хорошо объясняет геометрическое строение комплексных ионов. В гибридизации центрального атома могут участвовать электроны разных подуровней. В зависимости от формы орбиталей и их количества образуется тот или иной тип гибридизации и соответственно геометрическая конфигурация комплексного соединения. Например, при sp3d2 гибридизации комплекс имеет октаэдрическую конфигурацию. А при sp3-гибридизации - тетраэдрическая структура. Таким образом, метод валентных связей является наглядным методом, хорошо объясняющим геометрическую гибридизацию, но он не может дать качественной характеристики оптических свойств и прочности комплексов. В этом отношении более эффективными являются теория кристаллического поля и метод молекулярных орбиталей.
- 456.
Комплексные соединения. Получение и свойства
-
- 457.
Композиционные материалы на основе полибутилентерефталата и его сополимеров
Статья пополнение в коллекции 03.03.2010 Фирмой BASF получен новый тип стеклоармированного ПБТ, содержащего 50% стекловолокна, имеющего модуль упругости 19 ГПа (по сравнению с 3 ГПа для ненаполненных марок) и успешно заменяющего металлы в различных несущих и ответственных конструкциях [59]. Исследовали влияние стекловолокна на механические свойства композиционных материалов на основе смеси ПБТ/полиэтилен (высокой плотности) (80:20). Содержание стекловолокна в композиционный материалах меняли в пределах 10-30%(вес.). Для улучшения взаимодействия на границе раздела фаз полимерных компонентов применяли иономер сополимер этилена с метакриловой кислотой. Смеси получали на одношнековом экструдере при 250-260. Исследование микроструктуры композитов показало, что переработка уменьшает длину стекловолокна с 4,5мм до 1,2мм (при экструзии) и даже до 0,8 мм (при литье), причём уменьшение длины стекловолокна возрастает при увеличении степени наполнения композиционного материала: ориентация стекловолокна вдоль направления течения увеличивалась при росте скорости сдвига и степени наполнения композита. Применение иономера компатибилизатора ухудшало свойства композиционный материалов из-за снижения напряжений на границе материалов с ростом степени наполнения увеличивалась, но эффективность возрастания модуля упругости при этом снижалась. Ударопрочность композиционных материалов уменьшалась при испытаниях без надреза, но при испытаниях с надрезом в присутствии иономера-компатибилизатора несколько увеличивалась. Сделан вывод, что увеличение совместимости смесей, наполненных стекловолокном, не приводит к улучшению механических характеристик композиционных материалов [60].
- 457.
Композиционные материалы на основе полибутилентерефталата и его сополимеров
-
- 458.
Композиционные триботехнические материалы на основе олигомеров сшивающихся смол
Дипломная работа пополнение в коллекции 09.12.2008 Термообработ-киПосле термо-обработки при 1000СПосле термо-обработки при 2000СПосле термо-обработки при 2000С? 0d/n?I? 0d/n?I? 0d/n?I? 0d/n?I110,54,230,2010,44,270,2110,44,270,2210,44,270,23212,03,710,05313,43,321,0013,33,351,0013,43,321,0013,43,321,00413,83,230,11516,72,680,03618,32,450,2218,32,450,1918,22,470,1418,32,450,13719,82,270,3419,72,290,2619,72,290,2419,82,270,25820,22,230,1220,12,240,1020,12,240,0720,22,230,10921,32,120,2621,32,120,1621,22,130,1521,32,120,171022,91,980,1322,91,990,1322,91,980,1223,01,970,161123,71,920,031224,31,870,041325,11,820,4625,11,820,4225,11,820,4125,11,820,481427,51,670,1627,41,670,1427,41,670,1327,51,670,131528,81,600,031630,11,540,3630,01,540,2730,01,540,2430,01,540,241732,11,450,1032,01,450,0832,11,450,0732,01,450,061832,81,420,041934,11,370,4734,11,370,4234,11,370,3334,01,380,432036,91,280,1336,81,290,0836,81,290,0936,81,290,082137,91,250,1537,81,260,1237,91,250,0837,91,250,102238,91,230,0738,81,230,0538,81,230,0438,81,230,062338,91,230,072439,71,210,062540,01,200,1540,01,200,1240,01,200,1040,01,200,112640,71,180,2040,61,180,1340,71,180,1340,81,180,132741,91,150,0841,81,160,1042,01,150,0442,01,150,052845,51,080,0845,51,080,1045,41,080,0645,51,080,062947,51,050,0847,41,050,1047,41,050,0447,51,050,053048,21,030,0848,31,030,0448,21,030,0448,11,040,043149,41,010,0549,41,010,0349,31,020,0349,31,020,023251,30,990,0651,20,990,0551,30,990,0451,30,990,043352,10,980,040,043453,30,960,0653,20,960,0453,30,960,0653,30,960,043557,30,920,0857,30,920,0757,20,9257,40,910,063659,20,900,0659,20,900,04Из таблицы видно, что имеются некоторые изменения в структуре кремния после термообработки (ТО).
- 458.
Композиционные триботехнические материалы на основе олигомеров сшивающихся смол
-
- 459.
Компьютерные технологии при изучении темы "Молекулярные перегруппировки"
Методическое пособие пополнение в коллекции 28.07.2010 Химия - наука изучающая состав, свойства и превращения веществ, а также явления, которые сопровождают эти превращения. Одно из первых определений химии как науки дал русский ученый М.В. Ломоносов: «Химическая наука рассматривает свойства и изменения тел... состав тел... объясняет причину того, что с веществами при химических превращениях происходит». По Менделееву, химия это учение об элементах и их соединениях. Химия сегодня - это продукты и лекарства, горючее и одежда, удобрения и краски, анализ и синтез, организация производства и контроль качества его продукции, подготовка питьевой воды и обезвреживание стоков, экологический мониторинг и создание безопасной среды обитания человека. В ней широко применяются математические методы, используются расчеты и моделирование процессов на электронно-вычислительных машинах. Повсюду, куда бы мы не обратили свой взор, нас окружают предметы и изделия, изготовленные из веществ и материалов, которые получены на химических заводах и фабриках. Создание новых материалов, которые не требовали бы больших затрат в материальном, экологическом и временном отношениях, но в тоже время обладающих комплексом полезных свойств, - это существенная необходимость нашей современности. Учитывая эти обстоятельства, вопрос об изучении молекулярных перегруппировок становится все более целесообразным, поскольку перегруппировки имеют большие преимущества при получении ценных веществ по сравнению с другими методами синтеза. Так, например, при синтезе фенолкетонов с помощью перегруппировки Фриса можно зачастую обеспечить более высокие выходы конечного продукта, нежели по реакции Фриделя Крафтса. Все знают, что моторное топливо является немаловажным и широко используемым сырьем, соответственно его получают в огромных количествах. А это обеспечивается с помощью реакций изомеризации парафиновых углеводородов. В качестве примеров можно также привести бензидиновую перегруппировку, которая используется в производстве азокрасителей, например бензидина, толидина, дианизидина; перегруппировку Вагнера- Мейервейна , которая широко используется в промышленности при получении камферы из ?- пинена; изоборнилацетата из камфена, а также, терпенофенолов- промежуточных продуктов в синтезе кедрола, санталидола и некоторых других душистых веществ; перегруппировка Арбузова, которая имеет огромное значение в синтетической химии и роль которой будет рассмотрена ниже.
- 459.
Компьютерные технологии при изучении темы "Молекулярные перегруппировки"
-
- 460.
Конверсия угарного газа с паром
Курсовой проект пополнение в коллекции 15.05.2012 Из графиков видно, что равновесная степень превращения не меняется при разных температурах и давлениях. Это можно объяснить тем, что реакция является необратимой, идет до конца, исходные вещества превращаются в продукты реакции. Равновесная степень превращения равна 1 при температурах не ниже 1300С и давлении от 1 до 10 Па.
- Для расчета конечной степени превращения в РПС, используя уравнение материального баланса РПС, записываем функцию F. С ее помощью будем искать такое значение х, при котором F станет равной нулю.
- Определим функцию XAK, способную с помощью стандартной функции root рассчитать значение конечной степени превращения.
- Чтобы построить объемный график поверхности, определим частную функцию от 2 аргументов Xp(T,P) . При этом первое приближение также задается.
- Для построения поверхности конечной степени превращения в РПС определим частную функцию XAK1(T,P).
- Аналогично предыдущему пункту для построения конечной степени превращения используем частную функцию XAK2(T,P).
- Построим поверхности на объемном графике. В слот через запятую введем три обращения к вспомогательной функции Y. После настройки диапазонов аргументов в место трех обращений вводим имена отображаемых функций.
- Строим плоский X-Y-график. Сначала в качестве аргумента вводим Tm. Затем устанавливаем соответствующие пределы изменений.
- Аналогично строим для зависимости степени превращения от давления.
- 460.
Конверсия угарного газа с паром