Химия
-
- 141.
Влияние вида катализатора на параметры синтеза метанола
Информация пополнение в коллекции 18.06.2010 Жидкое сырье предварительно очищенное от сернистых примесей смешивают с водяным паром при температуре 800 - 850 С.Превращение сырья в синтез-газ осуществляется в присутствии никелевого катализатора. Тепло выделившееся в процессе используют для получения технологического пара. После охлаждения полученный синтез-газ сжимают до 5 - 10 МПа и направляют в реактор. Также можно использовать синтез-газ, полученный неполным окислением угля или нефтяных остатков в присутствии пара. Синтез на цинк-медном катализаторе ведут при 200-3000С и 5-10 МПа. В реакторе катализатор расположен слоями. Выходящие из реактора газы (6) проходят ряд теплообменников и поступают в сепаратор. Конденсат метанола подвергают испарению и направляют на ректификацию. Данный процесс характеризуется высокой производительностью и эффективной утилизацией тепла.
- 141.
Влияние вида катализатора на параметры синтеза метанола
-
- 142.
Влияние вязкости и дисперсности несовместимых полимеров на волокнообразование в их смесях
Статья пополнение в коллекции 07.03.2010
- 142.
Влияние вязкости и дисперсности несовместимых полимеров на волокнообразование в их смесях
-
- 143.
Влияние дисперсности алюминия и каталитических добавок на характеристики горения систем на основе активного горючего-связующего
Курсовой проект пополнение в коллекции 19.08.2010 Электропечь питается от сети переменного тока через стабилизатор напряжения (2) и автотрансформатор (3). Ток в обмотке печи измеряется амперметром (4) . За счет хорошей изоляции и постоянства тока в обмотке печи температура зажигающей поверхности остается постоянной во времени и слабо меняется в процессе проведения опыта. Измерение температуры поверхности производится термопарой (5), спай которой расположен внутри высверленного в болванке канала на глубине 1мм непосредственно в месте контакта с поверхностью зажигаемого образца. ЭДС термопары измеряется микровольтметром. Образец зажимом (6) крепится к штоку (7), который свободно перемещается в вертикальном направлении в направляющем отверстии поворотного кронштейна и может фиксироваться на нужной высоте чекой. Кронштейн устанавливается на определенной высоте на штанге (8) и может поворачиваться в горизонтальной плоскости на угол 120?.[4,стр.45-47]
- 143.
Влияние дисперсности алюминия и каталитических добавок на характеристики горения систем на основе активного горючего-связующего
-
- 144.
Влияние добавок на устойчивость пероксида водорода в водных растворах
Информация пополнение в коллекции 26.01.2011 Водные растворы пероксида водорода (с добавками моющих средств) используются в качестве моюще-дезинфицирующих средств в аптечных, клинических, детских дошкольных и других учреждениях. Однако широкое их применение сдерживается низкой стабильностью: при добавлении моющих средств к раствору ПВ, последний разрушается и быстро теряет «активный» кислород. По этой причине рабочие растворы моюще-дезинфицирующих средств на основе H2O2 на данный момент готовят непосредственно перед применением, а срок их хранения составляет всего несколько часов, что приводит к необходимости их стабилизации. Поэтому является актуальным поиск веществ, которые бы не катализировали разложение H2O2, способствовали усилению терапевтического действия и были бы безвредными для человека.
- 144.
Влияние добавок на устойчивость пероксида водорода в водных растворах
-
- 145.
Влияние жёсткости воды на пенообразование и его устойчивость
Информация пополнение в коллекции 08.11.2009 Пены - ячеистые дисперсные системы, представляющие собой совокупность пузырьков газа (пара), разделённых тонкими прослойками жидкости. Пены по размеру пузырьков относятся к грубодисперсным системам. Общий объём заключённого в них газа может в сотни раз превосходить объём дисперсионной среды - жидкости, находящейся в прослойках. Отношение объёма пены к объёму жидкой фазы называют Кратностью пены. При формировании высокократных пен пузырьки превращаются в многогранные ячейки, а жидкие прослойки - в плёнки толщиной несколько сотен, иногда несколько десятков нм. Такие плёнки образуют пространственный каркас, обладающий некоторой упругостью и прочностью. Поэтому пены имеют свойства структурированных систем. Одна из основных характеристик пены - устойчивость, определяемая по времени уменьшения на 50% объёма или высоты слоя пены, изменению её дисперсности и др. методами.
- 145.
Влияние жёсткости воды на пенообразование и его устойчивость
-
- 146.
Влияние кислорода на активность нанесенного ванадиевого катализатора в процессе газофазной полимеризации этилена
Статья пополнение в коллекции 20.02.2010 Полученные экспериментальные результаты по полимеризации этилена с А1(изо-Вu)2(ОВu-изо) приведены на рис. 3 и сводятся к следующему: катализатор УС14/перлит не обладает каталитической активностью в сочетании с А[(изо-Вu)2(ОВu-изо); добавки А1(изо-Вu)2(ОВu-изо) на стадии формирования активных центров в виде смеси с А1(изо-Вu)3 при одной и той же концентрации триизобутилалюминия (рис. 3, кривые 3, 4) и в ходе полимеризации (рис. 3, кривая 5) приводят к снижению начальной скорости полимеризации и ускорению дезактивации катализатора. На основании этих результатов, исходя из представлений о биметаллической природе активных центров, можно высказать следующие предположения: во-первых, Al(uзo-Bu)2(OBu-uзo) не является алкилирующим агентом и его действие ограничивается образованием комплексов с исходными и алки-лированными соединениями ванадия; во-вторых, образующиеся комплексы являются, пo-видимому, более прочными, по сравнению с комплексами, включающими А1(изо-Вu)3 (из-за сильных донорных свойств А1(изо-Вu)2-(ОВu-изо) [14, 15]); диизобутилалюминийбутоксид может замещать А1(изо-Вu)3 в ванадий-алюминиевых комплексах; в-третьих, комплексы A1(изо-Bu)2(OBu-изо) с алкилированным ванадием неактивны в процессе полимеризации этилена.
- 146.
Влияние кислорода на активность нанесенного ванадиевого катализатора в процессе газофазной полимеризации этилена
-
- 147.
Влияние концентрации аниона хлора на адсорбцию органического соединения реакционной серии оксиазометина на цинковом электроде
Курсовой проект пополнение в коллекции 11.12.2010 - Защита от коррозии, старение и биоповреждении машин, оборудования и сооружений: Справочник: В 2 т. Т. I. / Под ред. А.А. Герасименко. М.: Машиностроение. 1987. 688 с.. ил.: 1-Стр 11- 26; 1'-Стр 334
- Антропов Л. И. Теоретическая электрохимия: Учеб. Для хим. - технолог. Спец. Вузов. 4-е изд., перераб. и доп. М.: Высш. шк., 1984. 519 с., ил.: Стр 485
- Решетников С.М. ингибиторы кислотной коррозии металлов. Л.: Химия, 1986 -144 с., ил.: Стр 25
- Григорьев В.Г., Экилик В.В. химическая структура и защитное действие ингибиторов коррозии. Ростов н/Д: Ростовский университет,1978. 164 с.
- Ингибиторы коррозии металлов в кислых средах. Иванов Е.С. М.: металлургия, 1986, с. 175. Стр 4; 11;
- Малахов А.И., Жуков А.П. Основы металловедения и теории коррозии: Учебник для машиностроительных техникумов. М.: Высш. школа, 1978. -192 с., ил. Стр 118
- Семёнова И.В., Флорианович Г.М., Хорошилов А.В Коррозия и защита от коррозии / Под ред. И.В. Семёновой М.: ФИЗМАТЛИТ, 2002. -336 с. Стр-303
- Эванс Ю. Р. Коррозия, пассивность и защита металлов / Ю.Р. Эванс; пер. с англ. Под ред. Г.В. Акимова. М.: Л.: ГосНТИЛ по чёрной и цветной металлургии. 1941. -885
- Розенфельд, И. Л. Защита металлов / И. Л. Розенфельд, Ю. И. Кузнецов, И. Я. Кербелева и др. М.: - 1975. Т.11, №5 612 с.
- 147.
Влияние концентрации аниона хлора на адсорбцию органического соединения реакционной серии оксиазометина на цинковом электроде
-
- 148.
Влияние косметических средств на организм человека
Информация пополнение в коллекции 13.05.2012 . Канцерогенные:- diethanolamine, химикат, который используется не только в кремах, но и в очищающей косметике - лосьонах, сливках, молочке, пенке и другой косметике. DEA получила широкое распространение, за счет образование хорошей пены и отмывающей способности. Сам по себе компонент DEA не вреден, но в реакции с другими компонентами в косметической формуле, способен сформировать чрезвычайно мощное канцерогенное вещество, называемое nitrosodiethanolamine (NDEA). NDEA легко поглощается через кожу и вызывает раковые заболевания.(Monoethanolamine) химический абсорбент, используется в косметике для удаления газов H2S и CO, в составе кремов, как и DEA используется как эмульгатор.(Trithanolamine) - используется как консервант, может реагировать с нитратами и сформировать канцерогенное вещество nitrosamines, легко проникающее через кожу и вызывающее раковые заболевания.(Салициловая кислота (Бета-оксикислота)) растворяет жир и способна впитываться и очищать загрязненные поры. Она уменьшает количество угрей и предотвращает их появление, способствует отбеливанию. В больших дозах салициловая кислота является канцерогеном и мало кто знает, что лечение препаратами содержащими салициловую кислоту должно проводится не постоянно, а курсами, с перерывами не мене месяца.(Butylated Hydroxytoluene) - используется как антиокислитель в кремах и в пище (E321). Связывается с молекулами кислорода, препятствуя тем самым окислению жиров. Является канцерогеном. Запрещен для добавления в пищу в Японии, Румынии, Швеции, Австралии и США (в детском питании).
- 148.
Влияние косметических средств на организм человека
-
- 149.
Влияние механизма формирования полимерно-мономерных частиц на кинетические закономерности эмульсионной полимеризации акриловых мономеров
Статья пополнение в коллекции 02.03.2010 При полимеризации мономеров, относительно хорошо растворимых в воде, возможными местами образования ПМЧ принято считать истинный раствор мономера в иоде и набухшие в мономере мицеллы эмульгатора [61. Принимают, что при инициировании процесса персульфатом калия полимеризация начинается в водной фазе, образующийся олигомерный радикал дифилен и способен адсорбироваться на границе раздела фаз или внедряться в мицеллы эмульгатора, продолжая свой рост за счет солюбилизированного в мицеллах эмульгатора мономера. Другим путем образования ПМЧ считают выпадение растущих в водной фазе олигомерных радикалов в отдельную фазу при достижении такой степени полимеризации, при которой они становятся нерастворимыми в воде. Выпавшие в воду олигомерные радикалы образуют так называемые первичные частицы. Чем лучше растворим мономер в поде, тем больше образуется в воде растущих радикалов и соответственно большее число первичных частиц. Стабильность образующихся первичных частиц зависит от того, находятся ли на их поверхности заряженные стабилизирующие группы и присутствует или нет в системе эмульгатор.
- 149.
Влияние механизма формирования полимерно-мономерных частиц на кинетические закономерности эмульсионной полимеризации акриловых мономеров
-
- 150.
Влияние минерального состава питьевой воды на здоровье населения
Курсовой проект пополнение в коллекции 27.01.2011 Главными источниками соединений железа в природных водах являются процессы химического выветривания и растворения горных пород. Железо реагирует с содержащимися в природных водах минеральными и органическими веществами, образуя сложный комплекс соединений, находящихся в воде в растворенном, коллоидном и взвешенном состоянии (www.water.ru). Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками. В питьевой воде железо может присутствовать также вследствие применения на муниципальных станциях очистки воды железосодержащих коагулянтов, либо из-за коррозии "черных" (изготовленных из чугуна или стали) водопроводных труб. По органолептическим признакам предел содержания железа в воде практически повсеместно установлен на уровне 0.3 мг/л (а по нормам Европейского Союза даже 0.2 мг/л). Здесь необходимо подчеркнуть, что это ограничение именно по органолептическим соображениям. По показаниям вредности для здоровья такой параметр не установлен (Касапчук, 2001). Присутствие железа в воде крайне нежелательно. Избыточное железо (более 0,3 мг/л) накапливается в организме человека и разрушает печень, иммунную систему, увеличивая риск инфаркта, вызывает аллергические реакции, негативно влияет на репродуктивную функцию организма (Бержец, 2003; Борзунова, 2007; Сулькина, 2005).
- 150.
Влияние минерального состава питьевой воды на здоровье населения
-
- 151.
Влияние модифицированной полиметакриловой кислоты, ковалентно связанной с порфирином, на его кислотно-основные свойства
Информация пополнение в коллекции 22.03.2010
- 151.
Влияние модифицированной полиметакриловой кислоты, ковалентно связанной с порфирином, на его кислотно-основные свойства
-
- 152.
Влияние поверхностного потенциала воды на реологические свойства дисперсных систем
Статья пополнение в коллекции 09.12.2008 При погружении частиц дисперсной фазы в водную среду происходит специфическая адсорбция всегда присутствующих в воде ионов Н3О+ и OH- на поверхность. Величины адсорбции ионов Н3О+ и OH- обусловлены особенностям химического состава, кристаллической структуры и состояния поверхности частиц дисперсной фазы. Свойства межфазных границ «вода дисперсная фаза» зависят также от поверхностного потенциала воды. Известно, что в нейтральной среде поверхность воды имеет отрицательный потенциал -450 мВ, несмотря на то, что концентрация ионов Н3О+ равна концентрации ионов OH- 2. Ионы OH- по своему строению сильнее отличаются от строения молекул воды, чем ионы Н3О+, что и объясняет их повышенную поверхностную активность (рис.1). Поэтому, как правило, поверхность частиц в дисперсных системах заряжается отрицательно, что способствует снижению вязкости дисперсных систем благодаря уменьшению сил межчастичного трения в результате действия кулоновских сил взаимного отталкивания между частицами.
- 152.
Влияние поверхностного потенциала воды на реологические свойства дисперсных систем
-
- 153.
Влияние природы газа-носителя и его параметров на качество разделения веществ в газовой хроматографии
Информация пополнение в коллекции 07.02.2010 Так как уже были рассмотрены основные силы взаимодействия между молекулами растворителей и растворенных веществ, определяющие качество разделения в газо-жидкостной хроматографии. Если растворитель и сорбат (или хотя бы один из них) неполярны, то решающую роль играют силы дисперсионного взаимодействия. В пределах групп сорбатов близкого строения эти силы, как правило, больше для веществ с более высокой температурой кипения. При разделении как углеводородов, так и сорбатов, включающих гетероатомы на колонках с неполярными неподвижными фазами ненасыщенные соединения элюируются раньше, чем насыщенные с таким же числом углеродных атомов в молекулах, причем rpawc-изомеры, как правило, имеют величины удерживания несколько большие, чем цис-изомеры. Это же относится и к изомерам нафтеновой структуры. Сорбаты с разветвленным углеродным скелетом элюируются раньше соответствующих сорбатов нормального строения, причем увеличение степени разветвления влечет за собой уменьшение удерживания. Это справедливо, как правило, не только для случая неполярных неподвижных фаз. При выборе неподвижной фазы следует учитывать, что неполярные вещества обычно лучше разделяются на колонках с неполярными неподвижными фазами (применено правило «подобное растворяет подобное»), обеспечивается необходимая сорбционная емкость, а также разность сорбционных емкостей для разделяемых веществ (и возможность получения достаточно симметричных пиков). Такие неподвижные фазы, как нормальные парафины (в жидком состоянии), изомерный углеводород сквалан (2,6,10,15,19,23-гексаметилтетракозан), апиезоновые смазки, нефтяные масла, широко применяют при анализе нефтепродуктов и других углеводородных смесей, когда требуется элюировать компоненты в основном в порядке увеличения температур кипения. Практически аналогичные результаты получаются на колонках со слабополярными фазами, например различными силиконовыми маслами (с углеводородными заместителями), эфирами фталевой, себациновой и других кислот, полифениловыми эфирами.
- 153.
Влияние природы газа-носителя и его параметров на качество разделения веществ в газовой хроматографии
-
- 154.
Влияние растворителя на кинетику органических реакций
Дипломная работа пополнение в коллекции 09.03.2012 Концепция об определяющей роли когезионного (или внутреннего) давления полезна только при изучении реакций между нейтральными неполярными молекулами в неполярных растворителях, поскольку в таких случаях можно пренебречь другими свойствами растворителей, в том числе их сольватирующей способностью и полярностью. В реакциях между биполярными молекулами и ионами растворитель взаимодействует с реагентами и активированным комплексом за счёт неспецифической и специфической сольватации настолько эффективно, что вклад когезионного давления в ln k становится очень небольшим. Следует подчеркнуть, что когезионное, или внутреннее, давление не является мерой полярности растворителя. Полярность отражает способность растворителя взаимодействовать с растворённым веществом, в то время как когезионное давление, будучи характеристикой структуры растворителя, служит мерой количества энергии, необходимой для создания в данном растворителе полостей, способных вместить молекулы растворённого вещества. Таким образом, полярность и когезионное давление - это комплементарные параметры и скорость реакции зависит от каждого из них [1, 2, 4, 5].
- 154.
Влияние растворителя на кинетику органических реакций
-
- 155.
Влияние состава гибких сегментов на структуру и свойства полиуретанов
Информация пополнение в коллекции 20.03.2010
- 155.
Влияние состава гибких сегментов на структуру и свойства полиуретанов
-
- 156.
Влияние состава растворителя на микроволновый синтез нанопорошка CuInSe2
Дипломная работа пополнение в коллекции 05.05.2011 Теперь обратимся ненадолго к истории: Как возникло понятие о нановеществе? Особые физические свойства малых частиц давно, хотя и неосознанно, использовались людьми. Ещё в древнем Египте изготавливались образцы цветных стёкол, окрашенные коллоидными частицами металлов. Первым научным упоминанием малых частиц является, по-видимому, открытое в 1827 году шотландским ботаником Р.Броуном беспорядочное движение частиц цветочной пыльцы, взвешенных в жидкости. Теория броуновского движения, развитая независимо А.Эйнштейном и М.Смолуховским в начале XX века, является основой одного из экспериментальных методов определения размеров малых частиц. Фактически началом изучения наноструктурного состояния вещества явились исследования в области коллоидной химии, достаточно широко проводившиеся уже с середины XIX века. В начале XX века значительный вклад в развитие коллоидной химии и исследование дисперсных веществ, в определение размеров коллоидных частиц внёс шведский учёный Т.Сведберг. В 1919 году он создал метод выделения коллоидных частиц из растворов с помощью ультрацентрифуги. В 1926 году за работы в области дисперсных систем Т.Сведбергу была присуждена Нобелевская премия по химии. В 1960 году на собрании Американского Физического общества известный физик, лауреат Нобелевской премии, Ричард Фейнман почитал провидческую и пророческую лекцию под названием «Там внизу ещё очень много места», где фантазировал на тему вероятности создания и потенциальных возможностей наноразмерных материалов. Он предлагал манипулирование отдельными атомами для создания структур с очень разными свойствами. Множество фейнмановских измышлений стало реальностью, однако, его идеи не нашли отклика у учёных того времени. Сейчас среди исследователей в области нанотехнологии эта лекция, разумеется, является легендарной [5].
- 156.
Влияние состава растворителя на микроволновый синтез нанопорошка CuInSe2
-
- 157.
Влияние степени наполнения и свойств наполнителей на деформационно-прочностные свойства синтетических полиэтиленовых композитов
Информация пополнение в коллекции 24.03.2010
- 157.
Влияние степени наполнения и свойств наполнителей на деформационно-прочностные свойства синтетических полиэтиленовых композитов
-
- 158.
Влияние температуры на доменное структурообразование в сегментированных уретановых полимерах
Статья пополнение в коллекции 10.03.2010 Интересные результаты получены при наблюдении картины малоуглового рентгеновского рассеяния непосредственно в ходе изменения температуры образца (рис. 4). Образец полимера в вакуумной камере прибора КРМ-1 нагревали до заданной температуры (на что требовалось ~3-4 мин) и термостатировали. На протяжении 40-50 мин происходит нарастание до некоторого предела интенсивности рассеяния, фиксируемого под определенным углом, выбранным в области рефлекса, которому на кривых 7(0) при щелевой коллимации соответствует горизонтальный участок. При последующем охлаждении интенсивность понижается, но остается на уровне существенно более высоком, нежели исходный. Таким образом, нарастание интенсивности малоуглового рентгеновского рассеяния в ходе нагревания складывается из обратимой (связанной, по-видимому, с температурными изменениями плотностей доменов и среды) и необратимой части, обусловленной процессами совершенствования доменной структуры. Поскольку в последующих опытах повторное (обратимое) нарастание интенсивности рассеяния происходит быстро (со скоростью нагревания печи), следует заключить, что отмеченный интервал времени (40-50 мин) соответствует длительности процессов совершенствования доменной структуры в ПЭУМ.
- 158.
Влияние температуры на доменное структурообразование в сегментированных уретановых полимерах
-
- 159.
Влияние технологических добавок на структуру и свойства резин
Дипломная работа пополнение в коллекции 09.12.2008 - Донцов А.А., Литвинова Т.В. Каучук-олигомерные композиции в производстве резиновых изделий.- М.: Химия, 1986.- 216 с.
- Ельшевская Е.А., Писаренко Т.И. и др. Диспактолы новые отечественные технологические добавки полифункционального действия // Каучук и резина. 1993, N5, с. 48-51
- Химикаты добавки для полимерных материалов. Increase in custom formulations is good news for the additives business // Polim and Rubber Asia. 1992, N38. с. 31-32. Англ. Цитировано в реферативном журнале 1992, 20У117
- Технологические добавки для резиновых смесей. Экспресс-информация ЦНИИТЭ нефтехим, серия шинная промышленность, М.; 1992, N5, с. 2-6
- Использование жирных кислот таллового масла для синтеза высших жирных кислот С18 целевых добавок в резины.// Каучук и резина.- 1996.- N6.- с. 10-
- Худовеков В.Д. Сульфатное мыло и талловое масло (получение и переработка) М.Л. Гослесбумиздат. 1952.- 89 с
- Бабкина М.М. Лакокрасочные материалы на основе таллового масла // Лакокрасочные материалы.- 1979.- N4.- с.15-19.
- Коган В.Б., Трофимов А.Н. Получение карбоновых кислот на основе древесины.- Л: Наука, 1977.- 336 с.
- Олеохимические монографии (41). Олеохимикаты в переработке резиновых смесей и других эластомеров: Часть I. Oleochemical in the processing of rubber and other elastomers: Part I/ Lower E.S.// Pigment and resin technology, -1991.- 20, N5.- с. 10-14.-Англ.
- Литвинова Т.В. Пластификаторы для резинового производства. Тематический обзор ЦНИИТЭ нефтехим.- М: 1981.- 89 с.
- Афанасьев С.В., Назарова Ф.А. и др. Влияние стеариновой кмслоты на свойства полиизопренов // Каучук и резина.- 1993.- N1.- с. 19-21.
- Панкратов В.А., Луканичева В.Я., Емельянов Д.П. Влияние физико-химических характеристик стеариновой кислоты на свойства резин.// Каучук и резина.- 1996.- N6.- c. 37-39.
- Гофман В. Вулканизация и вулканизующие агенты.- Л: Химия, 1968.- 464 с.
- Белозеров Н.В., Демидов Г.К., Овчинникова В.Н. Технология резины.- М: Химия, 1993.-464 с.
- Влияние физико-механических характеристк стеариновой кислоты на свойства резин.// Каучук и резина.- 1996.- N6.- с. 17-23.
- Синтетические жирные кислоты фракции С21-С25 новый активатор вулканизации резиновых смесей.// Каучук и резина.- 1989.- N6.- с. 7-12.
- Юрьева Е.Н. Влияние числа углеводородных атомов на свойства жирных кислот.- Я: ЯПИ, 1978.-с.26.
- Влияние стеариновой кислоты на свойства полиизопренов.// Каучук и резина.- 1993.- N1.- 5-7.
- Инсарова Г.Н. Влияние поверхностно активных веществ на переработку резиновых смесей и свойства резин.- М: ЦНИИТЭ Нефтехим, 1980.- 30 с.
- Махлис Ф.А., Федюкин Д.Л. Технологический справочник по резине.- М: Химия, 1989.- 400 с.
- Догадкин Б., Бениска И. Действие активаторов вулканизации.// Коллоидный журнал.- 1956.- N5.- с.167-179.
- Догадкин Б.А., Донцов А.А., Шершнев В.А. Химия эластомеров.- М: Химия, 1981.- 376 с.
- Шершнев В.А. О влиянии индукционного периода вулканизации на структуру вулканизата.// Каучук и резина.- 1990.- N5.- с. 17-18.
- Производные жирных кислот. Монография (41). Часть II. Производные жирных кислот в технологии каучука и резины. Oleochemical monographs (41): Oleochemical in the processing of rubber and other elastomers: Part II / Lower Edgar S.// Pigment and resin technology.- 1991.- 20.- N6.- с.4-8.- Англ.
- Повышение качества резин путем модификации алкилоламидами высокомолекулярных синтетических жирных кислот (АВСЖК). / Огневский Л.А., Суходольский Л.Д., Литвинова Л.И.// Всесоюзная научно-техническая конференция “Качество и ресурсосберегательные технологии в резиновой промышленности”/ Я: ЯПИ.- 1991.- с.37.
- Рекомендации N 51-РМ-38-789-77 по применению в промышленности РТИ мягчителя Эмульфина К на основе СЖК фракции С17-С20. НИИРП.- 1977.- с.13.
- Paint Oil a. Colour J., 1953. V.124, No 2867. P. 729-731.
- Пат. 39933 (ПНР). РЖХИМ, 1960. 79498П.
- Пат. 2590655 (США). Chem. Abstr., 1952. V.656, No 4, P.1136; Rework, 1952, No 147, p. 264-3.
- Донцов А.А., Литвинова Т.В. Каучук-олигомерные композиции в производстве резиновых изделий.- М.: Химия, 1986.- 216 с.
- Новая технологическая добавка для шинных резин. New processing agent in the tire compounds/ Hong S.W.// Rubber world.- 1990.- 202, No5.- C. 33-38.- Англ. Цитировано в реферативном журнале 1991.- 16Y43.
- Новая технологическая добавка для шинных резин. Processing aid// Rubber world.- 1990.- 201, No7.- C. 15.- Англ. Цитировано в реферативном журнале 1991.- 16Y24.
- Субботин А.А. Лакокрасочные материалы и их применение.1963, No6.- c.18-21.
- Зандерман В. Природные смолы, скипидары, талловое масло.- М.: Лесная промышленность, 1964.- 576 с.
- Резина, содержащая смесь сложных эфиров смоляных кислот. Rubber compositions containing a mixture of alkyl asters of rosin acid: Пат. 5021492 США, МКИ с08 L 217/00/ Sandstrom Paul H., Wideman Lawson G.; The Goodyear Tire and Rubber Co.,- No601101; Заявл. 22.10.90; Опубл. 4.06.91; НКИ 524/274. Цитировано в реферативном журнале 1992.- 16Y22П.
- Производные смоляных кислот, содержащие амидные группы. Amide linked rosin asid derivatives: Пат. 4996295 США, МКИ С 09 F 1/04/ Wideman Lawson G.; The Goodyear Tire and Rubber Co., Akron, Ohio.- No411972; Заявл. 25.09.89; Опубл. 26.02.91. Цитировано в реферативном журнале 1992.- 19Y23.
- Испытание новых экономических повысителей клейкости в резинах для производства автокамер./ Т.И.Рыжова // Производство и использование эластомеров.- 1991.- No3.- с.30-34.
- Тютюнников Б.Н. Химия жиров.- М.: Пищевая промышленность, 1974.- 446 с.
- Исследование процесса глубокой переработки жирных кислот таллового масла. /Г.И.Кошель, В.И.Бычков, В.В.Соловьев // Тез. III международной конференции “Наукоемкие химические технологии”. Тверь, 11-15.09.95.- с.47-48.
- //Коллоидный журнал.- 1957.- No3.- с.367-383.
- Поддубный
- Могилевич М.М. Окислительная полимеризация в процессах пленкообразования.-Л.: Химия, 1977.- 176 с.
- 159.
Влияние технологических добавок на структуру и свойства резин
-
- 160.
Влияние углекислого газа
Информация пополнение в коллекции 12.01.2009 Тщательные измерения содержания атмосферного были начаты в 1957 году Киллингом в обсерватории Мауна-Лоа. Регулярные измерения содержания атмосферного проводятся также на ряде других станций. Из анализа наблюдений можно заключить, что годовой ход концентрации обусловлен в основном сезонными изменениями цикла фотосинтеза и деструкции растений на суше; на него также влияет, хотя и меньшей степени, годовой ход температуры поверхности океана, от которого зависит растворимость в морской воде. Третьим, и, вероятно, наименее важным фактором является годовой ход интенсивности фотосинтеза в океане. Среднее за каждый данный год содержание в атмосфере несколько выше в северном полушарии, поскольку источники антропогенного поступления расположены преимущественно в северном полушарии. Кроме того, наблюдаются небольшие межгодовые изменения содержания , которые, вероятно, определяются особенностями общей циркуляции атмосферы. Из имеющихся данных по изменению концентрации в атмосфере основное значение имеют данные о наблюдаемом в течение последних 25 лет регулярном росте содержания атмосферного . Более ранние измерения содержания атмосферного углекислого газа (начиная с середины прошлого века) были, как правило, недостаточно полны. Образцы воздуха отбирались без необходимой тщательности и не производилась оценка погрешности результатов. С помощью анализа состава пузырьков воздуха из ледниковых кернов стало возможным получить данные для периода с 1750 по 1960 год. Было также выявлено, что определённые путём анализа воздушных включений ледников значения концентраций атмосферного для 50-х годов хорошо согласуются с данными обсерватории Мауна-Лоа. Концентрация в течение 1750-1800 годов оказалась близкой к значению 280 млн., после чего она стала медленно расти и к 1984 году составляла 3431 млн..
- 160.
Влияние углекислого газа