Химия

  • 101. Биогенные элементы в организме человека
    Информация пополнение в коллекции 11.10.2011

    Микроэлементы содержатся в клетках в очень малых количествах. К ним относятся цинк, марганец, медь, йод, фтор и другие. Но даже те элементы, которые содержатся в ничтожно малых количествах, необходимы для жизни и ничем не могут быть заменены. Биологическая роль и функции, которые выполняют эти элементы в организме человека, очень разнообразны, а их недостаток или избыток может привести к серьезным заболеваниям (см. приложения Б и Г). [4, с. 21] Достаточно сказать, что около 200 ферментов активизируются металлами. Всего в организме человека выявлено около 70 минеральных веществ, из них 14 микроэлементов считаются незаменимыми - это железо, кобальт, медь, хром, никель, марганец, молибден, цинк, йод, олово, фтор, кремний, ванадий, селен. Многие микроэлементы поступают в организм почти исключительно за счёт плодовоовощного питания. Дикорастущие съедобные растения также богаты микроэлементами, которые, будучи извлечены из глубинных слоёв, накапливаются в листьях, цветах, плодах.

  • 102. Биокерамика на основе фосфатов кальция
    Методическое пособие пополнение в коллекции 19.01.2011
  • 103. Биологическая роль аминокислот
    Информация пополнение в коллекции 12.01.2009

    Тирозин необходим для нормальной работы надпочечников, щитовидной железы и гипофиза, создания красных и белых кровяных телец. Синтез меланина, пигмента кожи и волос, также требует присутствия тирозина. Тирозин обладает мощными стимулирующими свойствами. При хронической депрессии, для которой не существует общепринятых методов лечения, потребление 100 мг этой аминокислоты в день приводит к существенному улучшению. В организме тирозин превращается в ДОФА, а затем в дофамин, регулирующий давление крови и мочеиспускание, а также участвует в первом этапе синтеза норэпинефрина и эпинефрина (адреналина). Тирозин мешает превращению фенилаланина в эпинефрин, и потому является незаменимой аминокислотой для взрослых мужчин. Он необходим мужчинам, страдающим фенилкетонурией (генетическое заболевание, при котором превращение фенилаланина в тирозин затруднено). Тирозин также вызывает усиленное выделение гипофизоом гормона роста. При определении пищевой ценности белков следует учитывать сумму содержаний тирозина и фенилаланина, поскольку первый получается из второго. При заболеваниях почек синтез тирозина в организме может резко ослабиться, поэтому в этом случае его необходимо принимать в виде добавки.

  • 104. Биологическая роль железа
    Информация пополнение в коллекции 12.01.2009

    Во внеклеточных жидкостях железо находится в
    связанном состоянии - в виде железо - белковых комплексов.
    Концентрация его в плазме широко варьирует у здорового человека,
    составляет 10,8 - 28,8 мкмоль/л. с достаточно большими суточными
    колебаниями, достигающими 7,2 мкмоль/л. Общее содержание
    железа во всем объеме циркулирующей плазмы у взрослого человека
    составляет 3 - 4 мг. Уровень железа в плазме крови зависит от ряда
    факторов: взаимоотношения процессов разрушения и образования
    эритроцитов, состояния запасного фонда железа в желудочно-
    кишечном тракте. Однако наиболее важной причиной,
    определяющей уровень плазменного железа, является
    взаимодействие процессов синтеза и распада эритроцитов.
    Железо-связывающий белок трансферрин, открытый шведскими учеными, содержится в небольшом количестве в плазме крови. Общая железо-связывающая способность плазмы, характеризуящаясяпрактически концентрацией трансферрина, колеблется от 44,7 до 71,6 мкмоль/л, а свободная железо-связывающая способность - резервная емкость трансферрина - составляет 28.8 - 50.4 мкмоль/л у здорового человека. .

  • 105. Биологическая роль йода
    Информация пополнение в коллекции 08.08.2012

    Йод был открыт в 1811 году французским химиком-технологом Бернаром Куртуа (1777-1838), сыном известного селитровара. Куртуа не был простым ремесленником. Проработав три года в аптеке, он получил разрешение слушать лекции по химии и заниматься в лаборатории Политехнической школы у знаменитого парижского химика и политического деятеля Фуркруа. Бернар Куртуа стал изучать золу морских водорослей, из которой тогда добывали соду. Он заметил, что медный котел, в котором выпаривались зольные растворы, разрушается слишком быстро. Проделывая серию опытов, Куртуа взял две колбы, в одну из которых поместил серную кислоту с железом, а в другую - золу морских водорослей со спиртом. На плече у ученого во время опытов сидел его любимый кот. Однажды он неожиданно спрыгнул, опрокинув колбы, содержимое их смешалось. Куртуа увидел, что над лужицей, которая образовалась при падении сосудов, поднимается фиолетовое облачко.Впоследствии специально нагревая маточный (неразбавленный) раствор золы морских водорослей с концентрированной серной кислотой, он наблюдал выделение "паров великолепного фиолетового цвета", которые осаждались в виде темных блестящих пластинчатых кристаллов. "Удивительная окраска, неизвестная и невиданная ранее, позволяла сделать вывод, что получено новое вещество", - писал Куртуа в своих воспоминаниях.

  • 106. Биологическая роль каротиноидов
    Информация пополнение в коллекции 12.01.2009

    Биологическая активность каротина, вводимого с естественными продуктами, зависит также от происхождения этих продуктов, от их обработки перед употреблением в пищу, от способа введения их в организм и величины дозировки, от влияния сопутствующих веществ и от степени насыщенности организма каротином. Литературные данные по этому вопросу, однако, достаточно разноречивы. Согласно Грейвсу каротин зеленых растительных материалов более активен, чем каротин желтых и оранжевых продуктов. Так, например, активность каротина в варенной моркови, по данным автора достигает лишь 25% активности витимина А. Активность же каротина спаржи равна активности витамина А. По данным Эриксена и Хейгаарда каротин сырой моркови усваивается организмом только на 1%, каротин вареной моркови - на 19%. Для шпината же эти данные соответственно равны 45 и 48%. Шерман нашел, что каротин в шпинате обладает вдвое большей биологической активностью, чем каротин в моркови. Наряду с этим Смис и Отис утверждают, что активность каротина в шпинате равна активности чистого кристаллического каротина, растворенного в масле; активность же моркови - в шесть раз меньше. Такие же несовпадения имеют место и для люцерны, если сравнить данные различных авторов. Подобных примеров можно было бы привести еще большее количество. Предпринятые Шерманом, а также Грейвсом, попытки обобщить все эти наблюдения, следует признать несостоятельными. В вопросе о сравнительной биологической активности витамина А и каротина, попадающего в организм с различными продуктами, нет еще окончательно установившейся определенности.

  • 107. Биологическая химия
    Методическое пособие пополнение в коллекции 10.04.2012

    Проведение гидролиза. В колбу для гидролиза поместить 5 г дрожжей, добавить 15 мл 5%-ного раствора серной кислоты. Колбочку закрыть пробкой с обратным холодильником и осторожно кипятить в течение часа. После охлаждения гидролизат отфильтровать в химический стакан и использовать для анализа продуктов гидролиза. Обнаружение простых белков. В пробирку налить 5 капель гидролизата. добавить 10 капель 10% -ною раствора NаОH и одну каплю 1%-ного раствора сульфата меди. Пробирку встряхнуть и наблюдать положительную биуретовую реакцию (розовая или фиолетовая окраска). Открытие пентоз (рибозы и дезоксирибозы). В пробирку налить 5 капель гидролизата, добавить 5 капель раствора NаОН и 5 капель раствора сульфата меди до появления неисчезающего осадка гидроокиси меди Сu(ОН)2 Жидкость встряхнуть и нагреть до кипения. Наблюдать появление желтого или красного осадка. Открытие фосфорной кислоты. В пробирку налить 10 капель молибденового реактива, добавить 5 капель гидролизата и кипятить на пламени горелки. В присутствии фосфорной кислоты жидкость окрашивается в лимонно-желтый цвет. Пробирку охладить под струей холодной воды и наблюдать выпадение желтого кристалического осадка комплексного соединения фосфорно-молибденового аммония:

  • 108. Биологические методы очистки сточных вод
    Дипломная работа пополнение в коллекции 11.10.2011
  • 109. Биопластик в упаковке
    Информация пополнение в коллекции 02.05.2012

    , упаковка пищевых продуктов, одноразовая посуда. Американская компания Easten Chemiical в прошлом году начала производство сложного полиэфира Eastar Bio COPE. Конечный рынок применения - пищевая упаковка, мешки и пакеты для садоводческого и сельскохозяйственного использования. Материал имеет полукристаллическую основу, хорошие свойства прозрачности, а его барьерные характеристики по кислороду выше, чем у полиэтиленовой пленки. При компостировании упаковка разлагается на диоксид углерода, биомассу и воду так же быстро, как обыкновенная газета. Биоразлагаемые материалы немецкой компании BASF марки COPE и Ecoflex обладают технологическими свойствами, аналогичными полиэтилену низкой плотности (LDPE). Пленки Ecoflex имеют высокие характеристики сопротивления проколу и водонепроницаемости. При этом, в отличие от полиэтиленовой, они воздухопроницаемы. Швейцарская фирма DuPont объявила о коммерческом производстве Biomax - гидро-биоразлагаемого полиэфира. Обладая свойствами обычного полиэтилентерефталата, он лишь немого дороже в производстве по сравнению со своим "нефтяным" аналогом. Точка плавления Biomax - 200°С, относительное удлинение варьируется от 50 до 500 %, прочностные характеристики могут регулироваться. Компания ведет активный маркетинг нового полимера как в Европе, так и в США. Ряд компаний предлагают материалы, в которых параметры биоразложения можно регулировать. Английская компания Symphony Environment Ltd. выпустила на рынок биополимер на полиэтиленовой основе, в котором степень разложения контролируется специальными добавками. В зависимости от количества и качества предварительно вносимых добавок полное разложение упаковки может варьироваться в диапазоне от 60 дней до 5 лет. Среди других производителей, предлагающих нестандартные разработки, - итальянская фирма Novamont SpA и английская компания Environmental Polymers Group (EPG). Первая разработала четыре композиции материала марки Mater Bi, нетоксичного полиацеталя на основе крахмала. Вторая - компания EPG - работает над специальными сортами поливинилового спирта, который способен к биоразложению в горячей и холодной воде. Материал будет использован для производства упаковочной пленки методом экструзии с раздувом. Предполагаемая EPG технология включает два компонента: запатентованную технологию экструзии и собственные разработки биодеградантов на основе поливинилового спирта (PVON). Специалисты компании утверждают, что физические свойства изготавливаемой пленки будут эквиваленты, а в некоторых случаях и лучше, чем пленки из поливинилхлорида и полиэтилена, а по стоимости смогут конкурировать с другими биоматериалами. Новейшие технологии использовала американская корпорация Metabolix, концентрирующая свои усилия на PHA, материале со сложно структурой, производимом с помощью трасгенной технологии - know how компании. Технология позволяет изготавливать PHA напрямую, через процессы фотосинтеза, или косвенно, - ферментацией сахаров. Полимер представляет собою высококристаллический термопластик, разделяющий многие свойства с полипропиленом, включая идентичные точку плавления, предел прочности на разрыв, температуру склеивания и саму кристалличность. Предполагаемые рынки применения - упаковка для фаст-фуд, одноразовая упаковка медицинских препаратов. Однако, из всех представленных проектов, как полагают аналитики, наиболее успешным оказался проект, предложенный Cargill Dow, совместного предприятия двух компаний: сельскохозяйственного гиганта Cargill Corporation и лидера в производстве химических продуктов - корпорации Dow Chemical. Предприятие Cargill Dow является лидером в производстве полимолочной кислоты (PLA) - полимера, изготавливаемого из возобновляемых сельскохозяйственных ресурсов: зерновых и сахарной свеклы, то есть на основе растительных сахаров. Получаемый полимер обладает хорошей прозрачностью, прочностью, глянцем, является отличным влагопротектором, так же, как и ПЭТ, не пропускает запахи. Предполагаемая сфера применения - двуосноориентированные упаковочные пленки, жесткие контейнеры и даже покрытия. Компания утверждает, что упаковка из PLA-полимера способна полностью разлагаться в течение 45 дней при условии создания соответствующей структуры компостирования. По утверждению представителей Cargill Dow, технология совместного предприятия предлагает усовершенствованный контроль структуры полимеров. Преимущество данной технологии заключается в возможности использовать в качестве сырья самые разнообразные сельскохозяйственные сахаросодержащие культуры в различных регионах мира. Например, завод, вводимый в эксплуатацию в Европе в 2002 г., скорее всего, будет использовать пшеницу, а не кукурузу или бобовые, поскольку именно эта культура изобилует на европейском континенте. В других регионах в качестве возможного сырья будет выбрана свекла, тапиока или другие натуральные сахара. В отличие от своих конкурентов, биополимеры от Cargill Dow получили ощутимый коммерческий успех. Более десятка европейских и северо-американских фирм уже объявили о возможности использования новых полимерных материалов совместного предприятия. В списках потенциальных партнеров - немецкая фирма Hoechst Trespaphan Gmbh, второй по величине в мире производитель ориентированной полипропиленовой пленки. Сотрудничество двух крупнейших в своем бизнесе компаний обеспечивает возможность поддерживать приемлемые цены на биоразлагаемый полимер, делая его доступным. Аналитики Cargill Dow подтверждают, что "многие предыдущие проекты провалились, попросту "утопив" себя высокой стоимостью. Как бы положительно люди ни относились к проблемам охраны окружающей среды, их вряд ли устроит экологичная, но супердорогая упаковка". Однако в самой индустрии пластмасс, да и за ее пределами, все чаще обсуждается вопрос: "Оправдано ли морально использование сельскохозяйственного сырья для производства пластиков, если в мире существует голод?" Иными словами - не забирает ли Cargill Dow у голодающих пшеницу? В ответ компания приводит парадоксальные цифры. Оказывается, в пищу идет лишь 1 % зерновых, производимых в мире. Около половины всего урожая используется в качестве корма для животных. Еще 10 % идет на изготовление сахара и сахарозаменителей. "Производить биоразлагаемые материалы не означает в прямом смысле слова брать хлеб с чужого стола", - утверждает Пат Грубер, представитель Cargill Dow. - Европа, США выращивают огромные количества пшеницы, не предназначенные для пищи. Мы же можем использовать даже стебли кукурузных растений в качестве сырья. Голод - очень сложная комплексная проблема. Скорее, это политический вопрос, нежели технологический. Его решение выходит за рамки усилий по созданию биополимеров". Сфера применения возобновляемых ресурсов гораздо шире, чем индустрия пластмасс. На производство пластиков уходит менее 1 % от мировой добычи нефти. Вне зависимости от того, будут ли в ближайшее время истощены мировые запасы нефти, биодеграданты привлекут к себе еще больше внимания. Уже сейчас цены на нефть и природный газ, и их поставки крайне нестабильны. Один этот фактор побуждает производителей искать альтернативное сырье для производства полимеров. Сырье же растительное, природное, легко подвергающееся разложению, - лучший выход. А технические характеристики биодеградантов на данный момент не уступают их "нефтяным" аналогам.">На данный момент, пожалуй, все крупные в области производства полимерной продукции фирмы выдвинули свои версии биоразлагаемых материалов. Немецкая компания Bayer представила новый биоразлагаемый полиэфирамид. Полимер имеет полукристаллическую структуру и производится литьем под давлением или экструдируется на традиционном оборудовании. Сырьем для его производства является гексамителен диамин, бутандиол и адипиновая кислота. Получаемая пленка обладает степенью прозрачности, ранжируемой от полупрозрачной до прозрачной. Процесс биоразложения упаковки происходит в течение 60-ти дней при контакте с бактериями и грибками. Предполагаемая рыночная ниша - мешки для мусора <http://click02.begun.ru/click.jsp?url=Uua49VpTUlO41RPeYruFOu7VwZUJe*1rv18PYuedMPMyChctqpA1lCUWNbPXwZWDyEycZJIb1qD8armccq8ZTnikoZQT8HVWsKX-SxxXznpdVRi1xRqbT6qmhvXz6w*PXDJW5lOy9lIQQIrR5aYyh7I*6df-DVEVxPOg1o0gSR8CoM6LKEIPI5HRNP*MJ-Tw-wmdR4vVPKfHgejrXJe4n8wvJrA1IMTn5sKCOL8tk7b7Ghv37HLItWotqMFOp8BU1zkSl4lRSP*TYaiJ83ZBlkvGHS-*XR0mMl1xFXVfWVzy4CafjIySvH8atzVgamb*TAqdtLLWu3KJdTzIsFNDS7RxetBszkRxBTaPnmpaUHMiUV*nixhM*TwzhdFJ-XWwn-eAgA>, упаковка пищевых продуктов, одноразовая посуда. Американская компания Easten Chemiical в прошлом году начала производство сложного полиэфира Eastar Bio COPE. Конечный рынок применения - пищевая упаковка, мешки и пакеты для садоводческого и сельскохозяйственного использования. Материал имеет полукристаллическую основу, хорошие свойства прозрачности, а его барьерные характеристики по кислороду выше, чем у полиэтиленовой пленки. При компостировании упаковка разлагается на диоксид углерода, биомассу и воду так же быстро, как обыкновенная газета. Биоразлагаемые материалы немецкой компании BASF марки COPE и Ecoflex обладают технологическими свойствами, аналогичными полиэтилену низкой плотности (LDPE). Пленки Ecoflex имеют высокие характеристики сопротивления проколу и водонепроницаемости. При этом, в отличие от полиэтиленовой, они воздухопроницаемы. Швейцарская фирма DuPont объявила о коммерческом производстве Biomax - гидро-биоразлагаемого полиэфира. Обладая свойствами обычного полиэтилентерефталата, он лишь немого дороже в производстве по сравнению со своим "нефтяным" аналогом. Точка плавления Biomax - 200°С, относительное удлинение варьируется от 50 до 500 %, прочностные характеристики могут регулироваться. Компания ведет активный маркетинг нового полимера как в Европе, так и в США. Ряд компаний предлагают материалы, в которых параметры биоразложения можно регулировать. Английская компания Symphony Environment Ltd. выпустила на рынок биополимер на полиэтиленовой основе, в котором степень разложения контролируется специальными добавками. В зависимости от количества и качества предварительно вносимых добавок полное разложение упаковки может варьироваться в диапазоне от 60 дней до 5 лет. Среди других производителей, предлагающих нестандартные разработки, - итальянская фирма Novamont SpA и английская компания Environmental Polymers Group (EPG). Первая разработала четыре композиции материала марки Mater Bi, нетоксичного полиацеталя на основе крахмала. Вторая - компания EPG - работает над специальными сортами поливинилового спирта, который способен к биоразложению в горячей и холодной воде. Материал будет использован для производства упаковочной пленки методом экструзии с раздувом. Предполагаемая EPG технология включает два компонента: запатентованную технологию экструзии и собственные разработки биодеградантов на основе поливинилового спирта (PVON). Специалисты компании утверждают, что физические свойства изготавливаемой пленки будут эквиваленты, а в некоторых случаях и лучше, чем пленки из поливинилхлорида и полиэтилена, а по стоимости смогут конкурировать с другими биоматериалами. Новейшие технологии использовала американская корпорация Metabolix, концентрирующая свои усилия на PHA, материале со сложно структурой, производимом с помощью трасгенной технологии - know how компании. Технология позволяет изготавливать PHA напрямую, через процессы фотосинтеза, или косвенно, - ферментацией сахаров. Полимер представляет собою высококристаллический термопластик, разделяющий многие свойства с полипропиленом, включая идентичные точку плавления, предел прочности на разрыв, температуру склеивания и саму кристалличность. Предполагаемые рынки применения - упаковка для фаст-фуд, одноразовая упаковка медицинских препаратов. Однако, из всех представленных проектов, как полагают аналитики, наиболее успешным оказался проект, предложенный Cargill Dow, совместного предприятия двух компаний: сельскохозяйственного гиганта Cargill Corporation и лидера в производстве химических продуктов - корпорации Dow Chemical. Предприятие Cargill Dow является лидером в производстве полимолочной кислоты (PLA) - полимера, изготавливаемого из возобновляемых сельскохозяйственных ресурсов: зерновых и сахарной свеклы, то есть на основе растительных сахаров. Получаемый полимер обладает хорошей прозрачностью, прочностью, глянцем, является отличным влагопротектором, так же, как и ПЭТ, не пропускает запахи. Предполагаемая сфера применения - двуосноориентированные упаковочные пленки, жесткие контейнеры и даже покрытия. Компания утверждает, что упаковка из PLA-полимера способна полностью разлагаться в течение 45 дней при условии создания соответствующей структуры компостирования. По утверждению представителей Cargill Dow, технология совместного предприятия предлагает усовершенствованный контроль структуры полимеров. Преимущество данной технологии заключается в возможности использовать в качестве сырья самые разнообразные сельскохозяйственные сахаросодержащие культуры в различных регионах мира. Например, завод, вводимый в эксплуатацию в Европе в 2002 г., скорее всего, будет использовать пшеницу, а не кукурузу или бобовые, поскольку именно эта культура изобилует на европейском континенте. В других регионах в качестве возможного сырья будет выбрана свекла, тапиока или другие натуральные сахара. В отличие от своих конкурентов, биополимеры от Cargill Dow получили ощутимый коммерческий успех. Более десятка европейских и северо-американских фирм уже объявили о возможности использования новых полимерных материалов совместного предприятия. В списках потенциальных партнеров - немецкая фирма Hoechst Trespaphan Gmbh, второй по величине в мире производитель ориентированной полипропиленовой пленки. Сотрудничество двух крупнейших в своем бизнесе компаний обеспечивает возможность поддерживать приемлемые цены на биоразлагаемый полимер, делая его доступным. Аналитики Cargill Dow подтверждают, что "многие предыдущие проекты провалились, попросту "утопив" себя высокой стоимостью. Как бы положительно люди ни относились к проблемам охраны окружающей среды, их вряд ли устроит экологичная, но супердорогая упаковка". Однако в самой индустрии пластмасс, да и за ее пределами, все чаще обсуждается вопрос: "Оправдано ли морально использование сельскохозяйственного сырья для производства пластиков, если в мире существует голод?" Иными словами - не забирает ли Cargill Dow у голодающих пшеницу? В ответ компания приводит парадоксальные цифры. Оказывается, в пищу идет лишь 1 % зерновых, производимых в мире. Около половины всего урожая используется в качестве корма для животных. Еще 10 % идет на изготовление сахара и сахарозаменителей. "Производить биоразлагаемые материалы не означает в прямом смысле слова брать хлеб с чужого стола", - утверждает Пат Грубер, представитель Cargill Dow. - Европа, США выращивают огромные количества пшеницы, не предназначенные для пищи. Мы же можем использовать даже стебли кукурузных растений в качестве сырья. Голод - очень сложная комплексная проблема. Скорее, это политический вопрос, нежели технологический. Его решение выходит за рамки усилий по созданию биополимеров". Сфера применения возобновляемых ресурсов гораздо шире, чем индустрия пластмасс. На производство пластиков уходит менее 1 % от мировой добычи нефти. Вне зависимости от того, будут ли в ближайшее время истощены мировые запасы нефти, биодеграданты привлекут к себе еще больше внимания. Уже сейчас цены на нефть и природный газ, и их поставки крайне нестабильны. Один этот фактор побуждает производителей искать альтернативное сырье для производства полимеров. Сырье же растительное, природное, легко подвергающееся разложению, - лучший выход. А технические характеристики биодеградантов на данный момент не уступают их "нефтяным" аналогам.

  • 110. Биополимеры и их роль в нефтедобыче
    Контрольная работа пополнение в коллекции 12.11.2010

     

    1. МищенкоИ.Т., КондратюкА.Т.Особенности разработки нефтяных месторождений с трудноизвлекаемыми запасами. М.: Нефть и газ, 1996. 190с.
    2. КудиновВ.И., СучковБ.М.Новые технологии повышения добычи нефти. Самара, 1998. 368с.
    3. КукинВ.В., СоляковЮ.В.Применение водорастворимых полимеров для повышения нефтеотдачи пластов. М.: ВНИИОЭНГ, 1982. 44с.
    4. ШевцовИ.А., КабоВ.Я., РумянцеваЕ.А., ДосовА.Н.Новые технологии применения полимерных реагентов в добыче нефти// Состояние и перспективы работ по повышению нефтеотдачи пластов: тез. докл. конф. ОАО НК «ЛУКОЙЛ», 1998. с.4043.
    5. СоболевК.А.Исследование биополимеров в качестве реагентов для нефтедобычи: диссертация на соискание ученой степени кандидата технических наук. Москва, 2005
    6. ТолстыхЛ.И., ГолубеваИ.А.Химические реагенты для идентификации добычи нефти. Ч.1. Полимеры для повышения нефтеотдачи. М.: РГУ нефти и газа, 1993. 32с.
    7. Применение полимеров в добыче нефти/ ГригоращенкоГ.И., ЗайцевЮ.В., КукинВ.В., и др. М.: Недра, 1978. 213с.
    8. ЖдановС.А.Применение методов увеличения нефтеотдачи пластов: состояние и перспективы. М.: Нефть и газ, 1998. 19с.
    9. И.А.Швецов. Теоретические и практические основы применения полимеров для повышения эффективности заводнения нефтяных пластов: Дисс…докт. техн. наук. М.: ВНИИ, 1979. 365с.
    10. ПирогТ.П., КоваленкоМ.А., Кузьминская, Ю.В., КриштабТ.П. Интенсификация синтеза экзополисахарида этаполана на смеси ростовых культур// Микробиология. 2003. 72, №1. с.26 32.
    11. Полимерные и углеводородные составы для повышения нефтеотдачи высокообводнённых пластов// АюповА.Г., ШарифуллинА.В. и др.// Нефтяное хозяйство, 2003. №6. с.4851.
    12. НеупокоевВ.И., ЛомоваЛ.М., ЛомоваЕ.В., ВязниковцевС.Ф.Полисахариды компоненты буровых растворов// Строительство нефтяных и газовых скважин на суше и на море 1998. №6 С.2021.
    13. SutherlandI.W., Ellwood D.C. Microbial exopolysaccharides industrial polymers of current and future potential// Microbial technology: current state, future prospects, 29 Symp. the society for general microbiology, Cambridge. 1979. C. 107150.
    14. МойсаЮ.Н., КамбуловЕ.Ю., МолкановаЕ.Н., МорщаковаГ.Н., СтрельниковаТ.Л., КапотинаЛ.Н.Российский биополимерный реагент АСГ-1 для бурения скважин// Нефтяное Хозяйство. 2001. №7. С.2830.
    15. ГринбергТ.А., ПирогТ.П., МалашенкоЮ.Р., ПинчукГ.Э.Микробный синтез экзополисахаридов на С1-С2-соединениях. Киев.: Наукова думка, 1992, 212с.
    16. CadmusM.C., RogovinS.P., BurtonK.A., et al. Colonial variation in Xanthamonas campestris NRRL 1459 and characterization of the polysaccharide from variant strain// Can. J. Microbiol. 22. P. 126130
    17. Johnson I.J. Jr., Kikwood S., Misaki A. Et al. Structure of a new glucan// Chem. Und. (London). 1963. 41, №4. P. 820822.
    18. Lecourtier J., Noik C., Chauveteau G. Semirigid polysaccharides for polymer flooding in high salinity reservoir// 4th Eur. Symp. Enhanc. Oil. Recov. Humburg, October 2729, 1987. Hamburg, 1987. P. 105116.
    19. Pat. 4234689 USA, 103 C 12 P 19/04. Production of a-emulsans / D.L./ Gutnick, E. Rosenberg, Y. Shabtai. Publ. 18.11.80.
    20. МищенкоИ.Т., КондратюкА.Т.Особенности разработки нефтяных месторождений с трудноизвлекаемыми запасами. М.: Нефть и газ, 1996, 190с.
    21. БулавинВ.Д., КраснопевцеваН.В.Технологический комплекс для интенсификации добычи нефти и увеличения нефтеотдачи на основе отечественного биополимера// Нефтяное Хозяйство. 2002. №4. С.67.
    22. БасарыгинЮ.М., БулатовА.И., ПроселковЮ.М.Технология капитального и подземного ремонта нефтяных и газовых скважин: учеб. для вузов. Краснодар: «Сов. Кубань», 2002
    23. Патент РФ 2055982 «Состав для увеличения нефтеотдачи пласта»
    24. АгзамовФ.А., МорозовД.В.Применение биополимеров для водоизоляции пластов. Уфа, 2002
  • 111. Биоразлагаемые полимерные материалы
    Курсовой проект пополнение в коллекции 27.02.2011

    Благодаря медленной скорости кристаллизации пленка, изготовленная из PHVB, будет липкой сама по себе даже после охлаждения; значительная часть PHVB остается аморфной и липкой в течение продолжительного периода времени. В операциях отливки пленки, где пленку немедленно охлаждают на охлаждающих валках, после того как она покидает экструзионную головку, расплав PHVB часто прилипает к валкам, замедляя скорость, с которой может быть переработана пленка, или даже предотвращая процесс наматывания пленки. В пленках, полученных раздувом, остаточная липкость PHVB заставляет трубчатую пленку слипаться, после того как ее охлаждают и сдавливают для намотки.
    Патент США 4880592, Martini et.al., опубликованный 14 ноября 1989, раскрывает значения, достигаемые PHVB монослоем пленки, для применений в качестве нижнего покрытия пеленки за счет соэкструдирования PHVB между двумя слоями полимера, например полиолефина, растяжение и ориентацию многослойной пленки и затем сдирание прочь полиолефиновых слоев, после того как PHVB было предоставлено время для кристаллизации. Остающуюся пленку PHVB затем ламинируют либо водорастворимыми пленками, либо водонерастворимыми пленками, такими как поливинилиденхлоридными или другими полиолефинами. К сожалению, такие решительные и громоздкие меры переработки являются необходимыми при попытке избежать присущих трудностей, связанных с переработкой PHVB в пленки.
    На основании приведенного выше, существует необходимость создания поглощающих изделий одноразового использования (например, пеленок) с повышенной биодеградируемостью. Для удовлетворения этой необходимости существует предварительная необходимость в биодеградируемом сополимере, который являлся бы способным к тому, чтобы быть легко перерабатываемым в пленку для использования в таких санитарных предметах одноразового использования.

  • 112. Биохимия простагландины
    Информация пополнение в коллекции 09.12.2008

    В опытах «ин виво» было установлено, что ПГ-Е при внутривенном введении в дозах 0,125-4,0 мкг на 100 г вызывает увеличение содержания кортикостерона в периферической крови и надпочечниках крыс при одновременном снижении в последних холестерина и аскорбиновой кислоты. ПГ-F и ПГ-А были неактивны. Отсутствие действия ПГ-Е1 у гипофизэктомированных и у получавших морфий крыс позволяет предполагать, что изменение функциональной активности надпочечников опосредовано через стимуляцию гипофиза и гипоталамуса. Возможность такого действия простагландинов доказана экспериментально. Вместе с тем в опытах «ин виво» была показана возможность и непосредственного действия простагландинов на надпочечники. Так ПГ-Е2 увеличивал эндогенное образование кортикостерона при инкубации декапсулированных суперфузированных половинок надпочечников крыс. Действие ПГ-Е2 на стероидогенез оказалось сходным с действием АКТГ, но было более кратковременным. В надпочечниках, полученных от гипофизэктомированных крыс в отдалённые сроки после операции (ч/з 12 час. и позднее), стимулирующего действия простагландинов не проявлялось. В срезах бычьих надпочечников ПГ-Е1 и ПГ-Е2 на 50-100% увеличивали образование альдостерона, кортикостерона и кортизола. Одновременно наблюдалось повышение содержания цАМФ ПГ-А и ПГ-F были неактивны. Пуромицин и отсутствие в среде Са2+ подавляло действие ПГ-Е.

  • 113. Биохимия. Вода
    Контрольная работа пополнение в коллекции 09.12.2008

    Окисление одного вещества всегда сопряжено с восстановлением другого: первое отдает атом водорода, а второе его присоединяет. Катализируют эти процессы дегидрогеназы, обеспечивающие перенос атомов водорода от субстратов к коферментам. В цикле трикарбоновых кислот одни специфические дегидрогеназы окисляют субстраты с образованием восстановленной формы кофермента (никотинамиддинуклеотида, обозначаемого НАД), а другие окисляют восстановленный кофермент (НАДЧН), восстанавливая другие дыхательные ферменты, в том числе цитохромы (железосодержащие гемопротеины), в которых атом железа попеременно то окисляется, то восстанавливается. В конечном итоге восстановленная форма цитохромоксидазы, одного из ключевых железосодержащих ферментов, окисляется кислородом, попадающим в наш организм с вдыхаемым воздухом. Когда происходит горение сахара (окисление кислородом воздуха), входящие в его состав атомы углерода непосредственно взаимодействуют с кислородом, образуя диоксид углерода. В отличие от горения, при окислении сахара в организме кислород окисляет собственно железо цитохромоксидазы, но в конечном итоге его окислительный потенциал используется для полного окисления сахаров в ходе многоступенчатого процесса, опосредуемого ферментами.

  • 114. Бис-малеинимид-олигофенолдисульфидное связующее и материалы на его основе
    Методическое пособие пополнение в коллекции 21.03.2010
  • 115. Біотехнологія металів
    Информация пополнение в коллекции 23.08.2010

    Цікаво, що входження хімічних елементів до складу живих організмів не залежить яким-небудь простим чином від їх розповсюдженості. Дійсно, хоча найбільш поширений на землі елемент - кисень - є найважливішою складовою частиною зєднань, що складають рослинні і тваринні організми, такі розповсюджуванні елементи, як кремній і алюміній, в їх склад не входять, а відносно мало поширені кобальт, мідь і молібден виконують важливу біологічну роль. Слід зазначити також, що серед біоелементів, тобто елементів, що грають важливу роль в будівництві живого організму і в процесах підтримки його життя (обмін речовин, метаболізм), знаходяться ті, що дуже сильно розрізняються по своїх хімічних властивостях, розмірах часток і електронній будові метали і неметали. Наприклад, серед біометалів (їх часто називають «металами життя») є елементи, створюючи іони з благородногазової електронною «підкладкою», несхильні до проявлення змінної валентності (Na+, K+, Mg2+, Са2+). Разом з цим є серед біометалів і елементи з 18-електронною (Zn2+) або недобудованої 18-електронною «підкладкою» (Cu2+, Co2+, Fe2+, Fe3+, Мо(V), Мо(VI)). Останні схильні змінювати міру окислення в ході обміну речовин.

  • 116. Бош и Габер – положительные и отрицательные моменты научной деятельности
    Дипломная работа пополнение в коллекции 04.01.2012

    Свои заявки на изобретения Оствальд предложил приобрести руководству БАСФ - компании, занявшей ведущее положение в стране после создания промышленного синтеза индиго. Но сотрудничества не вышло. В 1901 году патент на способ окисления аммиака на платине для получения азотной кислоты руководство БАСФ отклонило на том основании, что он был запатентован еще в 1838 году французом Фредерихом Кульманом. Годом ранее заявку Оствальда на способ синтез аммиака из азота и водорода было поручено воспроизвести юному Бошу. Он с энтузиазмом взялся за работу и быстро собрал «машину», так принято у немцев называть всякие установки. Процесс, однако, не пошел. Узнав об этом, Оствальд передал компании катализатор собственного приготовления, который был в виде сетки из железной проволоки. С ним у Боша получалось немного аммиака, но на этом все и кончалось. Знаменитый профессор, один из первых теоретиков катализа, встал было в позу обиженного: его результаты поручают проверять молодому специалисту, а тот еще и порочит его славное имя. Вот тут и пригодились Бошу знания и опыт металлурга. Проштудировав литературу, он вскоре смог четко объяснить неудачу, а вывод подкрепил собственными экспериментами. Причина была в том, что этот аммиак получался не из азота воздуха, а из того, что был на проволоке в форме нитрида. Должно быть, у Оствальда на какой-то стадии проволока подвергалась прогреву в аммиаке, и поверхность азотировалась, иначе его сетка не содержала бы нитрид железа. При подаче же на нее синтез-Газа, то есть стехиометрической смеси N2 и H2, нитрид восстанавливался водородом до металла с выделением аммиака. Другими словами, Оствальд получал аммиак всего-навсего из аммиака, а не из азота. Когда нитрид кончался, никакого аммиака получать не удавалось. Отношение коллег и руководства к Бошу, понятно, изменилось, а он почувствовал уверенность в себе. Своей будущей жене Эльзе Шилбах он пообещал: «Я решу проблему азота!» На БАСФ ему и пришлось заняться окислением азота в электрической дуге, получением цианидов и нитридов. Но это была лишь прелюдия. В 1908 году БАСФ подписала контракт с Фрицем Габером на исследование синтеза аммиака. У Габера был задел, вскоре он подготовил к демонстрации новую «машину». Боша назначили экспертом. Он с помощником Алвином Митташем отправился к Габеру в Карлсруэ. И тут сработал «эффект присутствия» - машина сразу не завелась, сломался болт. Бош не стал ждать и один вернулся в Людвиксхафен, где располагалась штаб-квартира БАСФ. Ему и тут было все ясно, директору Генриху фон Брунку он сказал: «Я знаю точно, что может делать сталелитейная промышленность. Надо рисковать». Риск был большим, появились лишь первые обнадеживающие результаты, да и то в лабораторных условиях. Директор поддержал Боша. Контракт с Габером переписали на более выгодных для него условиях, он стал в перспективе очень богатым человеком. А пока что они с Бошем за несколько недель заложили в Людвигсхафене основу исследовательского центра. Получив впоследствии место директора Института физической химии кайзера Вильгельма, Габер перебрался в Берлин и отошел от проблем аммиака.

  • 117. Бром
    Информация пополнение в коллекции 09.12.2008

    Исходным сырьём для получения брома служат морская вода, озёрные и подземные рассолы и щелока калийного произва, содержащие бром в виде бромид-иона Вг-. Бром выделяют при помощи хлора и отгоняют из раствора водяным паром или воздухом. Отгонку паром ведут в колоннах, изготовленных из гранита, керамики или иного стойкого к брому материала. Сверху в колонну подают подогретый рассол, а снизу - хлор и водяной пар. Пары брома, выходящие из колонны, конденсируют в керамиковых холодильниках. Далее бром отделяют от воды и очищают от примеси хлора дистилляцией. Отгонка воздухом позволяет использовать для получения брома рассолы с его низким содержанием, выделять бром из которых паровым способом в результате большого расхода пара невыгодно. Из получаемой бромовоздушной смеси бром улавливают химическими поглотителями. Для этого применяют растворы бромистого железа, которое, в свою очередь, получают восстановлением FеВг3 железными стружками, а также растворы гидроокисей или карбонатов натрия или газообразный сернистый ангидрид, реагирующий с бромом в присутствии паров воды с образованием оромистоводородной и серной кислот. Из полученных полупродуктов бром выделяют действием хлора или кислоты. В случае необходимости полупродукты перерабатывают на бромистые соединения, не выделяя элементарного брома.

  • 118. Бром. Инфракрасная спектроскопия
    Доклад пополнение в коллекции 28.07.2010
  • 119. Бутадиен – 1,3
    Информация пополнение в коллекции 09.12.2008

    Атомы углерода в молекуле бутадиена-1,3 находятся в состоянии sp 3 -гибридизации. За счет гибридных sp 3 -орбиталей, оси симметрии которых лежат в одной плоскости, в молекуле возникают s -связи между всеми атомами углерода и s -связи углерод водород. Центры всех атомов в молекуле бутадиена-1,3 лежат в одной плоскости. Негибридные p-орбитали атомов углерода (по одной у каждого атома) расположены перпендикулярно к плоскости молекулы и перекрываются не только между атомами 1,2 и 3,4, но и между атомами 2,3. Электроны на таких орбиталях образуют общую p -электронную систему однако перекрывание p - орбиталей между атомами углерода 2 и 3 менее полное, чем 1,2- и 3,4-перекрывание.

  • 120. Бутадиеновый каучук
    Информация пополнение в коллекции 12.01.2009

    Изменяя состав исходных мономеров, порядок их чередования в гигантских молекулах, условия синтеза и последующей обработки полученных материалов, можно практически неограниченно изменять свойства полимера: от легко воспламеняющихся до совершенно негорючих и жаростойких; от растворимых в воде до отталкивающих влагу; от хрупких и тяжёлых, как металл, до эластичных и гибких, как каучук, или в десятки раз более лёгких, чем вода.