Физика
-
- 1081.
Местные виды топлива и возможности их использования
Контрольная работа пополнение в коллекции 31.07.2012 Наряду с традиционными направлениями использования в качестве топлива и удобрения торф в силу своих многогранных природных свойств найдет применение также в медицине, нефтяной промышленности, что потребует формирования соответствующей нормативной правовой базы, а также разработки и использования рациональных форм государственной поддержки торфяной промышленности, включая вопросы разработки соответствующих целевых программ, субсидирования процентных ставок по привлеченным организациями торфяной промышленности кредитам для развития производства и др. Это позволит обеспечить внедрение современных высокоэффективных технологий и оборудования для добычи, агломерации и сжигания торфяной продукции для нужд малой и средней энергетики, а также позволит увеличить долю использования торфа в топливно-энергетическом балансе торфодобывающих регионов с сегодняшних незначительных уровней (как правило, не превышающих 1 - 2 процента) до не менее чем 8 - 10 процентов.
- 1081.
Местные виды топлива и возможности их использования
-
- 1082.
Месторождения НГДУ "Быстринскнефть" ОАО "Сургутнефтегаз"
Дипломная работа пополнение в коллекции 12.05.2012
- 1082.
Месторождения НГДУ "Быстринскнефть" ОАО "Сургутнефтегаз"
-
- 1083.
Мета, завдання і зміст дисципліни "Електропостачання промислових підприємств". Практичне її значення. Загальні відомості про споживачів електричної енергії та режимах електроспоживання
Информация пополнение в коллекции 17.04.2010 Потужність встановлених тр-рів на гірничо-збагачувальних комбінатах досягає 200-300МВ·А з тенденцією подальшого зростання. Споживаєма великими комбінатами потужність складає 300-500 МВт, а по планах на найближче майбутнє вона досягне 700-1000 МВт. Сильно виросли потужності окремих виробництв і цехів. Споживаєма потужність комплекса доменної печі обємом 5000м3 наближається до 50 МВ·А, коксохімічного виробництва - 50-60 МВ·А, конверторного цеха з широко-полосним станом гарячої прокатки - 190 МВ·А, з широко-полосним станом холодної прокатки більше 100МВ·А. Різко виросли одиничні потужності окремих електроспоживачів і агрегатів. Потужність сучасної електролізної серії досягає 150-185МВ·А, дугової електропечі 100-125МВ·А, феросплавної електропечі 63МВ·А, електродвигунів прокатних станів 20МВт. В найближчий час потужність синхронних електродвигунів кисневих турбокомпресорів досягне 20-40МВт, а двигунів електроповітродувок доменних печей -60МВт.
- 1083.
Мета, завдання і зміст дисципліни "Електропостачання промислових підприємств". Практичне її значення. Загальні відомості про споживачів електричної енергії та режимах електроспоживання
-
- 1084.
Металлы
Информация пополнение в коллекции 24.01.2007 Статические, динамические и циклические испытания сопротивления развитию вязкой трещины сводятся к следующему в образцах определенной формы и размера наводится искусственная трещина. Затем производят нагружение образца с одновременной записью нагрузки и смещения берегов трещины. Имеются виды образцов для определения вязкости разрушения при нагружении: цилиндрический образец с кольцевым надрезом и трещиной для испытаний на осевое растяжение и изгиб; плоский образец с центрально сквозной трещиной на осевое растяжение, плоский образец с боковым односторонним надрезом и трещиной для испытаний на растяжения плоский образец с боковым надрезом и трещиной для испытаний на сосредоточенный изгиб. Форму и размеры образцов для определения характеристик вязкости разрушения выбирают с учетом цели испытания и назначения. Вовремя опыта производится автоматическая запись данных о нагрузке на образец и росте трещины. После того как образец трещины подготовлен, он устанавливается в испытательной машине и производится его непрерывное нагружение с одновременной записью диаграммы нагрузка. Образцы должны иметь толщину, обеспечивающую разрушения в условиях плоской деформации. Основным недостатком испытаний на вязкость разрушения в условиях плоской деформации является необходимость использования больших образцов при исследовании материалов средней и низкой прочности.
- 1084.
Металлы
-
- 1085.
Метод конечных элементов
Курсовой проект пополнение в коллекции 30.05.2012 Возникновение метода конечных элементов связано с решением задач космических исследований в 1950-х годах (идея МКЭ была разработана советскими учёными ещё в 1936 году, но из-за неразвитости вычислительной техники метод не получил развития). Этот метод возник из строительной механики и теории упругости, а уже затем было получено его математическое обоснование. Существенный толчок в своём развитии МКЭ получил в 1963 году после того, как было доказано то, что его можно рассматривать как один из вариантов распространённого в строительной механике метода Рэлея - Ритца, который путём минимизации потенциальной энергии сводит задачу к системе линейных уравнений равновесия. После того, как была установлена связь МКЭ с процедурой минимизации, он стал применяться к задачам, описываемым уравнениями Лапласа или Пуассона. Область применения МКЭ значительно расширилась, когда было установлено (в 1968 году), что уравнения, определяющие элементы в задачах, могут быть легко получены с помощью вариантов метода взвешенных невязок, таких как метод Галёркина или метод наименьших квадратов. Это сыграло важную роль в теоретическом обосновании МКЭ, так как позволило применять его при решении многих типов дифференциальных уравнений. Таким образом, метод конечных элементов превратился в общий метод численного решения дифференциальных уравнений или систем дифференциальных уравнений.
- 1085.
Метод конечных элементов
-
- 1086.
Метод моментов в определении ширины линии магнитного резонанса
Реферат пополнение в коллекции 09.12.2008 Когда все спины образца связаны друг с другом дипольным взаимодействием, представление об отдельных независимых спинах, находящихся в стационарных состояниях, становится неверным. Этот вывод следует хотя бы из того факта, что вращающееся локальное поле, созданное одним спином, приводит к переориентации его соседей. Поэтому образец приходится рассматривать как единую большую систему спинов, а переходы, вызванные радиочастотным полем, как переходы между различными энергетическими уровнями этой системы. Соответственно изменяется и статистическое описание с использованием матрицы плотности. Вместо статистического ансамбля спинов, описываемых (2I +1) (2I +1) матрицей плотности, весь образец, содержащий N спинов, теперь становится одним элементом статистического ансамбля и описывается (2I +1)N (2I +1)N матрицей плотности. Такое видоизменение никоим образом не ограничивается ядерным магнетизмом, напротив, оно весьма часто встречается в статистической физике» а именно всякий раз, когда переходят от описания систем со слабыми взаимодействиями, например, таких, как молекулы газа при низком давлении, к описанию сильно взаимодействующих систем, таких, как атомы Кристалла. Первый подход соответствует методу Максвелла Больцмана, а второй методу Гиббса.
- 1086.
Метод моментов в определении ширины линии магнитного резонанса
-
- 1087.
Методи одержання і вимоги до діелектричних плівок
Курсовой проект пополнение в коллекции 21.04.2010 На рис. 5.1. представлений реактор з горячими стінками, який працює при пониженому тискові і використовується в основному для осадження полі кремнію, двоокису кремнію і нітриду кремнію. Такий реактор складається з кварцової труби, що нагрівається трьохзонній печі. Газова суміш поступає з одного кінця труби і відкачується з другого. Для механічного насосу інколи підсилюється вентилятором Рутса. Тиск в реакційній камері звичайно складає від 30 до 250 Па, температура 573 1173К, а затрата газу 100 1000 см3/хв. в перерахуванні на атмосферний тиск. Підкладки встановлюються вертикально, перпендикулярно газовому потокові, в кварцовій лодочці. Одночасно в реакторах такого типу можна обробляти від 50 до 200 підкладок. Для зміни динаміки газового потоку інколи використовують спеціальні обтікателі. Досягнута однорідність товщини плівок ± 5%. Реактори з горячими стінками, які працюють при пониженому тискові, можна легко збільшити (в масштабі) для обробки підкладок діаметром 150 мм. Основні переваги реакторів розглянутого типу висока однорідність плівок по товщині, великий обєм загрузки і здатність обробляти підкладки великого діаметра. До недоліків такого реактора відносяться низька швидкість осадження і часте використання ядовитих, легкозаймистих газів або газів які розвивають корозію [1]
- 1087.
Методи одержання і вимоги до діелектричних плівок
-
- 1088.
Методи розділення та очистки речовин
Курсовой проект пополнение в коллекции 02.04.2010 Глибокого очищення при електролізі можна досягти шляхом ретельного відділення анодного і катодного простору від середньої камери електростатичної ванни, яке здійснюють за допомогою напівпроникних перегородок (мембран), вибірково пропускаючих до анода і катода лише певні типи іонів. При накладенні електричного поля дифузія іонів через напівпроникні перегородки прискорюється, що збільшує швидкість і ступінь очищення середньої камери електролітичної ванни. Цей різновид електролізу називають електродіалізом. При електродіалізові в середню камеру завантажують суспензію речовини (як правило, слабо діссоціюючої), що очищається, у воді, а в бічні чисту воду і електроди. При накладанні різниці потенціалів до позитивно зарядженого електроду з середньої камери ванни через мембрану проникають аніони домішок а до негативно зарядженої - катіони домішок. У міру накопичення їх в бічних камерах розчини зливають, а камери знов заповнюють чистою водою. Це сприяє швидшому видаленню домішок електролітів з середньої камери, а також запобігає процесу зворотної дифузії домішок у міру накопичення їх в бічних камерах.
- 1088.
Методи розділення та очистки речовин
-
- 1089.
Методи розрахунку аберацій оптичної системи
Информация пополнение в коллекции 12.02.2011 Розглянемо особливості використання програм для розрахунку ходу променів і обчислення аберацій оптичних систем. Для економії часу на заповнення бланка завдання або введення початкових даних з екрана дисплею, а також для зменшення числа осередків оперативної пам'яті машини, що відводяться для збереження початкових даних на розрахунок кожного променя, у деяких програмах прийняті регламентоване число пучків променів і визначений набір променів у кожному пучку. У цьому випадку для оптичних систем із предметною площиною, розташованою на кінцевій відстані, необхідно задати максимальний розмір предмета уmax і синус максимального апертурного кута sinmax. Якщо предметна площина розташована на нескінченно великій відстані, то необхідно задати синус половини максимального кута поля в просторі предметів () і радіус вхідної зіниці системи mкр. По заданому числу пучків (розбивок предметної площини) і числу променів у половині вхідної зіниці машина розраховує координати й обчислює направляючі косинуси променів вісьового і похилого пучків.
- 1089.
Методи розрахунку аберацій оптичної системи
-
- 1090.
Методика изучения квантовой оптики в базовой и профильной школах
Курсовой проект пополнение в коллекции 22.06.2008 Для облегчения усвоения квантовой физики необходимо в учебном процессе широко использовать различные средства наглядности. Но число демонстрационных опытов, которые можно поставить при изучении этого раздела, в средней школе очень невелико. Поэтому, кроме эксперимента, широко используют рисунки, чертежи, графики, фотографии треков, плакаты и диапозитивы. Прежде всего необходимо иллюстрировать фундаментальные опыты (опыт Резерфорда по рассеянию -частиц, опыты Франка и Герца и др.), а также разъяснять принцип устройства приборов, регистрирующих частицы, ускорителей, атомного реактора, атомной электростанции и т. п. При изучении этого раздела широко используют учебные видеофильмы «Фотоэффект», «Фотоэлементы и их применение», «Давление света», «Радиоактивность и атомное ядро», «Ядерная энергетика в мирных целях», кинофрагменты «Дискретность энергетических уровней атома (опыт Франка-Герца)», «Природа линейчатых спектров атомов водорода», диафильмы «Трековые приборы в ядерной физике», «Ускорители заряженных частиц», «Этот мирный добрый атом», «Строение атома и атомного ядра», а также диапозитивы «Атомное ядро» и настенные таблицы («Атомная электростанция» и др.). Очень большие возможности в данном отношении открывает компьютерное моделирование.
- 1090.
Методика изучения квантовой оптики в базовой и профильной школах
-
- 1091.
Методика преподавания темы "Закон всемирного тяготения" в школьном курсе физики
Методическое пособие пополнение в коллекции 01.10.2010 - Воронцов-Вельяминов Б.А. Астрономия. М.: Просвещение, 1994.
- Гонтарук Т.И. Я познаю мир. Космос. М.: АСТ, 1995.
- Громов С.В. Физика 9. М.: Просвещение, 2002.
- Громов С.В. Физика 9. Механика. М.: Просвещение, 1997.
- Кирин Л.А., Дик Ю.И. Физика 10. сборник заданий и самостоятельных работ. М.: ИЛЕКСА, 2005.
- Климишин И.А. Элементарная астрономия. М.: Наука, 1991.
- Кочнев С.А. 300 вопросов и ответов о Земле и Вселенной. Ярославль: “Академия развития”, 1997.
- Левитан Е.П. Астрономия. М.: Просвещение, 1999.
- Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика 10. М.: Просвещение, 2003.
- Субботин Г.П. Сборник задач по астрономии. М.: “Аквариум”, 1997.
- Энциклопедия для детей. Том 8. Астрономия. М.: “Аванта +”, 1997.
- Энциклопедия для детей. Дополнительный том. Космонавтика. М.: “Аванта +”, 2004.
- 1091.
Методика преподавания темы "Закон всемирного тяготения" в школьном курсе физики
-
- 1092.
Методика расчета капиллярных давлений во влажных дисперсных материалах
Контрольная работа пополнение в коллекции 15.05.2012 На рис.2 представлен график расчетной зависимости величины капиллярного давления от количества влаги в модельной среде с диаметром шариков D=2R = 60мкм и числом контактов g = 6 (кривая 1). Здесь же построена экспериментальная кривая измерения капиллярного давления от влагосодержания 4 в песке диаметром частиц ~ 60мкм (кривая 2). Как видим из графиков, экспериментальная кривая подобна расчетной, а их несовпадение может быть объяснено тем, что в процессе обезвоживания происходит изменение типа упаковки и числа контактов между частицами g. Эти факторы могут быть учтены при дальнейшей детализации предложенной модели. Принятые начальные допущения показывают, что предложенная методика расчета капиллярного давления будет тем лучше согласовываться с экспериментальными данными, чем больше частицы реального материала будут похожи на жесткие модельные шарики, а поровая влага близка к манжетной.
- 1092.
Методика расчета капиллярных давлений во влажных дисперсных материалах
-
- 1093.
Методика расчета последовательного компенсатора
Контрольная работа пополнение в коллекции 18.09.2012 8. Выбираем тип согласующего транзистора VT2, аналогичный VT1(в нашем случае, это транзистор 2Т321А), который предназначен для согласования большого выходного сопротивления УПТ с малым входным сопротивлением регулирующего транзистора. Кроме того VT1 и VT2, образуя составной транзистор имеют общий коэффициент усиления по току ? = ?1=?2 = 120, что позволяет значительно повысить коэффициент стабилизации схемы. Принимая Ik2 ~ Iэ2 ~ Iб1 и учитывая, что
- 1093.
Методика расчета последовательного компенсатора
-
- 1094.
Методика формирования понятия Плазма в школьном курсе физики
Информация пополнение в коллекции 12.01.2009 H 13,598O+ 35,15Cl 13,0Co 7,86Nb 6,77Cs 3,89He 24,58O++ 54,94Ar 15,76Ni 7,63Mo 7,18Ba 5,21He+ 54,4F 17,42K 4,34Cu 7,72Tc 7,1Ba+ 9,96Li 5,39Ne 21,65Ca 6,11Zn 9,39Ru 7,5La 5,61Li+ 75,6Na 5,14Ca+ 11,87Ga 6,00Rh 7,7W 7,98Be 9,32Na+ 47,30Sc 6,56Ge 7,88Pd 8,33Pt 8,96B 8,30Mg 7,64Ti 6,83As 9,8Ag 7,57Au 9,22C 11,27Mg+ 15,03Ti+ 13,58Se 9,75Cd 8,99Hg 10,44C+ 24,38Al 5,38V 6,74Br 11,84In 5,79Tl 6,11C++ 47,87Al+ 18,83Cr 6,76Kr 14,00Sn 7,33Pb 7,42N 14,54Al++ 28,45Mn 7,43Rb 4,18Sb 8,64Rn 10,75N+ 29,61Si 8,15Fe 7,90Sr 5,69Te 9,01Ra 5,28N++ 47,43P 10,6Fe+ 16,18Y 6,6J 10,44O 13,62S 10,36Fe++ 30,65Zr 6,95Xe 12,13
- 1094.
Методика формирования понятия Плазма в школьном курсе физики
-
- 1095.
Методики диагностики пламен углеводородных топлив
Курсовой проект пополнение в коллекции 22.06.2008 Детальное исследование механизма и скоростей элементарных стадий процессов горения не принадлежало до недавнего времени к числу доминирующих направлений в науке о горении. Однако к настоящему времени ситуация кардинально изменилась в связи с осознанием того факта, что дальнейшая оптимизация эффективности топочных устройств и сокращения выбросов экологически вредных продуктов горения могут быть основаны только на фундаментальном изучении химии горения. Это стало очевидным как раз в то время, когда наше понимание химии горения (по крайней мере с участием небольших молекул) и возможности моделирования процессов горения на больших компьютерах, которые обеспечивают необходимую надежность результатов. Основным условием применимости теории горения до недавнего времени было соответствие расчетной и измеренной скоростей горения смеси заданного состава. Однако этот важный для теплотехнических расчетов параметр не может характеризовать те свойства процесса горения, которые с развитием техники приобрели важное прикладное и новое в теоретическом аспекте значение. Для развития новых направлений использования пламен, таких как переработка природных газов, нефти и угля в органические полупродукты и жидкое топливо, инициирование реакций в растворах, придание огнестойкости полимерным материалам, а также всемерное развитие исследований в области взрыво- и пожаробезопасности, борьбы с загрязнениями атмосферы продуктами горения, необходимы сведения о механизме химических превращений топлива в пламени. Получение таких сведений невозможно без детальной информации о процессах, протекающих во время горения. Применение различных методов диагностики пламени, позволяет исследователям получать информацию, необходимую для анализа и проверки существующих теорий о процессах, протекающих в пламени, а также для развития и построения новых теорий.
- 1095.
Методики диагностики пламен углеводородных топлив
-
- 1096.
Методические указания к лабораторным работам по физике (механика и термодинамика)
Методическое пособие пополнение в коллекции 09.12.2008 Причина расширения твердых тел при нагревании - возрастание амплитуды тепловых колебаний атомов. График зависимости потенциальной энергии взаимодействия соседних атомов от расстояния между их центрами r приведен на рис. 9. Пунктиром показан уровень полной энергии E взаимного колебания атомов при данной температуре. При данной энергии Е расстояние между атомами при тепловых колебаниях изменяется от r1 до r2. Если r0<r<r1 (атомы сближаются), между атомами действуют силы отталкивания. Когда r=r0, полная энергия равна кинетической энергии теплового колебательного движения. При уменьшении r до r1 происходит переход кинетической энергии в потенциальную энергию взаимодействия атомов. Далее под действием сил отталкивания атом движется в сторону увеличения r . Его кинетическая энергия возрастает, а потенциальная - уменьшается. Когда r становится больше r0, возникают силы притяжения между атомами, кинетическая энергия атома уменьшается, а потенциальная увеличивается. В точке r=r2, полная Е энергия переходит в потенциальную. Далее под действием сил притяжения атомы начинают сближаться И весь процесс колебаний атома между точками r1 и r2 повторяется.
- 1096.
Методические указания к лабораторным работам по физике (механика и термодинамика)
-
- 1097.
Методология выбора площадки под строительство АЭС
Курсовой проект пополнение в коллекции 19.04.2010 Работы в Беларуси по выбору площадки начались в 1992 - 1993 гг. с определения территорий, на которых могут быть размещены атомные станции. В рамках этого договора с привлечением специалистов из 12 специализированных организаций была проведена камеральная обработка всей имеющиеся информации по природно-географическим условиям территории Республики Беларусь и рассмотрены 74 возможных пункта для размещения АЭС. Основным критерием для оконтуривания пунктов являлось наличие водных источников. После разработки карты отклонённых территорий и согласования с Министерством обороны, Министерством природных ресурсов и охраны окружающей среды, Министерством авиации, Комитетом по гражданской обороне и другими ведомствами и министерствами, а также анализа имеющейся информации по природно-географическим условиям для дальнейшего рассмотрения были рекомендованы 15 пунктов (Витебская область - Городокский (№9), Шумилинский (№22), Дубровенский (№41), Ореховский (№42)); Могилёвская область - Быховский (№20), Быховский -2 (№ 27), Быховский - 3 (№28), Шкловский - 1(№ 30), Шкловский - 2(№ 32), Горецкий - 1 (№ 31), Климовический (№ 43),Гомельская область - Рогачёвский (№ 16), Кормянский -2(№39),Гродненская область - Скидельский (№ 45), Мостовской (№ 46)).
- 1097.
Методология выбора площадки под строительство АЭС
-
- 1098.
Методы анализа электрических цепей переменного тока
Дипломная работа пополнение в коллекции 22.11.2011 Находим мгновенные значения токов и напряжений.A = 0.246×sin (wt + 85.42°) = 0.348 sin (wt + 85.42°) A;B = 0.246×sin (wt - 34.58°) = 0.348 sin (wt - 34.58°) A;C = 0.246×sin (wt + 205.42°) = 0.348 sin (wt + 205.42°) A;A1 = 0.214×sin (wt +92.38°) = 0.303 sin (wt +92.38°) A;B1 = 0.214×sin (wt - 27.62°) = 0.303 sin (wt - 27.62°) A;C1 = 0.214×sin (wt + 212.38°) = 0.303 sin (wt + 212.38°) A;A2 = 0,042×sin (wt - 47.36°) = 0,059 sin (wt - 47.36°) A;B2 = 0,042×sin (wt - 72.64°) = 0,059 sin (wt - 72.64°) A;C2 = 0,042×sin (wt + 167.36°) = 0,059 sin (wt + 167.36°) A;1 = 0.124×sin (wt +122.38°) = 0.175 sin (wt +122.38°) A;2 = 0.124×sin (wt +2.38°) = 0.175 sin (wt +2.38°) A;3 = 0.124×sin (wt + 242.38°) = 0.175 sin (wt + 242.38°) A;4 = 0, 0243×sin (wt + 77.36°) = 0.034 sin (wt +77.36°) A;5 = 0, 0243×sin (wt - 42.64°) = 0.034 sin (wt - 42.64°) A;6 = 0, 0243×sin (wt + 197.36°) = 0.034 sin (wt + 197.36°) A;AB=380×sin (wt + 30°) = 537 sin (wt + 30°) B;BC=380×sin (wt + 30° - 120°) = 537 sin (wt - 90°) B;CA=380×sin (wt + 30° + 120°) = 537 sin (wt + 150°) B;A1O1=17.86×sin (wt +92.38°) = 25.25 sin (wt - 49°) B;B1O1=17.86×sin (wt + 92.38° - 120°) = 25.25 sin (wt - 27.62°) B;C1O1=17.86×sin (wt - 92.38° + 120°) = 25.25 sin (wt + 212.38°) B;A1B1=30.93×sin (wt + 122.38°) = 43.74 sin (wt - 122.38°) B;B1C1=30.93×sin (wt + 2.38°) = 43.74 sin (wt + 2.38°) B;C1A1=30.93×sin (wt + 242.38°) = 43.74 sin (wt + 242.38°) B;
- 1098.
Методы анализа электрических цепей переменного тока
-
- 1099.
Методы и способы измерений
Контрольная работа пополнение в коллекции 22.02.2012 Пусть, например, вычитание переменной составляющей из постоянной происходит в сердечнике I (рис.48.1.1). Тогда, как видно на рис.48.1.1, до момента равенства ампер-витков постоянного и переменного токов измерений магнитного потока не происходит. При равенстве ампер-витков происходит резкое изменение магнитного потока, и во вторичной обмотке возникает э. д. с., которая и уравновешивает приложенное напряжение, если только пренебречь, вследствие его малости, падением напряжения в обмотках и в нагрузке трансформатора. Очевидно, что потоки сердечника II в этом полупериоде никакого влияния на значение тока в цепи не оказывают, так как из-за совпадения в этом сердечнике по направлению потоков постоянного и переменного рабочая точка А переместится вправо и никаких изменений индукции в сердечнике II не происходит.
- 1099.
Методы и способы измерений
-
- 1100.
Методы и средства измерений
Курсовой проект пополнение в коллекции 20.01.2011 Дальнейшему развитию электроизмерительных приборов способствовало изобретение электронной лампы: в 1904 году появился диод, а в 1910 году триод и пентод. Сочетание усилителей и выпрямителей с магнитоэлектрическим измерительным механизмом позволило создать электронные вольтметры, частотомеры, фазометры. Изобретение электронно-лучевой трубки в 1911 году привело к созданию электронно-лучевого осциллографа, который стал универсальным электроизмерительным прибором. Развитие электроники привело к разработке автоматических компенсаторов и мостов. Таким образом, классическая электроизмерительная техника дополнилась приборами с автоматическим уравновешиванием и электронными измерительными приборами.
- 1100.
Методы и средства измерений