Высшее профессиональное образование основы геоинформатики вдвух книгах
Вид материала | Книга |
- Должностная инструкция менеджера по персоналу 00. 00. 0000, 61.54kb.
- Наименование реализуемых программ, 40.13kb.
- Учебное пособие практикум по конкурентным стратегиям, слияниям и поглощениям Кафедра, 1849.76kb.
- Утверждено ученым советом дгу 26 января 2012 г., протокол, 78.34kb.
- Программа вступительных испытаний по литературе на экзамене по литературе поступающий, 270.11kb.
- Апк агропромышленный комплекс; впо высшее профессиональное образование; гоу государственное, 760.98kb.
- Высшее экономическое образование за 3 года 4 месяца для лиц, имеющих среднее и высшее, 28.87kb.
- Учебно-тематический план для подготовки по специальности «Оператор ЭВМ с основами делопроизводства, 140.91kb.
- Учебно-тематический план для подготовки по специальности «Оператор ЭВМ с основами арм, 121.8kb.
- «Исследование природных ресурсов аэрокосмическими средствами», 30.45kb.
Загрязнение. С помощью ГИС удобно моделировать влияние и распространение загрязнения от точечных и неточечных (пространственных) источников на местности, в атмосфере и по гидрологической сети. Результаты модельных расчетов можно наложить на природные карты, например карты растительности, или же на карты жилых массивов в данном районе. В результате можно оперативно оценить ближайшие и будущие последствия таких экстремальных ситуаций, как разлив нефти и других вредных веществ, а также влияние постоянно действующих точечных и площадных загрязнителей.
Охраняемые территории. Еще одна распространенная сфера применения ГИС — сбор и управление данными по охраняемым территориям, таким, как заказники, заповедники и национальные парки. В пределах охраняемых районов можно проводить полноценный пространственный мониторинг растительных сообществ ценных и редких видов животных, определять влияние антропогенных вмешательств, таких, как туризм, прокладка дорог или ЛЭП, планировать и доводить до реализации природоохранные мероприятия. Возможно выполнение и многопользовательских задач — регулирование выпаса скота и прогнозирование продуктивности земельных угодий. Эти задачи ГИС решают на научной основе, т. е. выбираются решения, обеспечивающие минимальный
361
уровень воздействия на природу, сохранение на требуемом уровне чистоты воздуха, водных объектов и почв, особенно в часто посещаемых туристами районах.
Неохраняемые территории. Региональные и местные руководящие структуры широко применяют возможности ГИС для получения оптимальных решений проблем, связанных с распределением и контролируемым использованием земельных ресурсов, улаживанием конфликтных ситуаций между владельцем и арендаторами земель. Полезным и зачастую необходимым бывает сравнение текущих границ участков землепользования с зонированием земель и перспективными планами их использования. ГИС обеспечивает также возможность сопоставления границ землепользования с требованиями природы. Например, в ряде случаев бывает необходимым зарезервировать коридоры миграции диких животных через освоенные территории между заповедниками или национальными парками. Постоянный сбор и обновление данных о границах землепользования может оказать большую помощь при разработке природоохранных, в том числе административных и законодательных, мер, отслеживать их исполнение, своевременно вносить изменения и дополнения в имеющиеся законы и постановления на основе базовых научных экологических принципов и концепций.
Восстановление среды обитания. ГИС является эффективным средством для изучения среды обитания в целом, отдельных видов растительного и животного мира в пространственном и временном аспектах. Если установлены конкретные параметры окружающей среды, необходимые, например, для существования какого-либо вида животных, включая наличие пастбищ и мест для размножения, соответствующие типы и запасы кормовых ресурсов, источники воды, требования к чистоте природной среды, то ГИС поможет быстро подыскать районы с подходящей комбинацией параметров, в пределах которых условия существования или восстановления численности данного вида будут близки к оптимальным. На стадии адаптации переселенного вида к новой местности ГИС эффективна для мониторинга ближайших и отдаленных последствий принятых мероприятий, оценки их успешности, выявления проблем и поиска путей по их преодолению.
Междисциплинарные исследования (экология и медицина/демография/климатология). Интегральные функциональные возможности ГИС в наиболее явном виде проявляются и благоприятствуют успешному проведению совместных междисциплинарных исследований. Они обеспечивают объединение и наложение друг на друга любых типов данных, лишь бы их можно было отобразить на карте. К подобным исследованиям относятся, например, такие: анализ взаимосвязей между здоровьем населения и разнообразными (природными, демографическими, экономическими) факторами; количественная оценка влияния параметров окружа-
362
ющей среды на состояние локальных и региональных экосистем и их составляющих; определение доходов землевладельцев в зависимости от преобладающих типов почв, климатических условий, удаленности от городов и др.; выявление численности и плотности ареалов распространения редких и исчезающих видов растений в зависимости от высоты местности, угла наклона и экспозиции склонов.
Экологическое образование. Поскольку создание бумажных карт с помощью ГИС значительно упрощается и удешевляется, появляется возможность получения большого количества разнообразных экологических карт, что расширяет возможности и широту охвата программ и курсов экологического образования. Ввиду простоты копирования и производства картографической продукции ее может использовать практически любой ученый, преподаватель или студент. Более того, стандартизация формата и компоновки базовых карт служит основой для сбора и демонстрации данных, получаемых учащимися и студентами, обмена данными между учебными заведениями и создания единой базы по регионам и в национальном масштабе. Можно подготовить специальные карты для землевладельцев с целью ознакомления их с планируемыми природоохранными мероприятиями, схемами буферных зон и экологических коридоров, которые создаются в данном районе и могут затронуть их земельные участки.
Экотуризм. Возможность быстрого создания привлекательных, красочных и в то же время качественных профессионально составленных карт делает ГИС идеальным средством создания рекламных и обзорных материалов для вовлечения публики в быстро развивающуюся сферу экотуризма. Характерной чертой так называемых «экотуристов» является глубокая заинтересованность в подробной информации о природных особенностях данной местности или страны, о происходящих в природе процессах, связанных с экологией в широком смысле. Среди этой достаточно многочисленной группы людей большой популярностью пользуются созданные с помощью ГИС научно-образовательные карты, отображающие распространение растительных сообществ, отдельных видов животных и птиц, области эндемиков и т.д. Подобная информация может оказаться полезной для целей экологического образования или для туристских агентств, для получения дополнительных средств из фондов проектов и национальных программ, поощряющих развитие путешествий и экскурсий.
Мониторинг. По мере расширения и углубления природоохранных мероприятий одной из основных сфер применения ГИС становится слежение за последствиями предпринимаемых действий на локальном и региональном уровнях. Источниками обновляемой информации могут быть результаты наземных съемок или дистанционных наблюдений. Использование ГИС эффектив-
363
но и для мониторинга условий жизнедеятельности местных и привнесенных видов, выявления причинно-следственных цепочек и взаимосвязей, оценки благоприятных и неблагоприятных последствий предпринимаемых природоохранных мероприятий на экосистему в целом и отдельные ее компоненты, принятия оперативных решений по их корректировке в зависимости от внешних условий.
Теперь обратимся к конкретным реализованным экологическим проектам с использованием ГИС-технологий. Все приводимые ниже примеры взяты из опубликованных в Интернете обзоров, материалов конференций и других публикаций.
Экологический мониторинг и контроль нефтепровода Россия — Китай (С. Г. Кореей, Е.О.Чубай РАО «РОСНЕФТЕГАЗСТРОЙ»). Как правильно отмечено авторами, строительство трубопровода влечет за собой воздействие на состояние окружающей среды, флоры и фауны, но при грамотном и рациональном подходе к трассированию и непосредственно строительству изменение экосистемы может быть сведено к минимуму. Основополагающий аспект экологически грамотного проектирования нефтепровода заключается в смягчении воздействия на геосистемы и в использовании специальных технических приемов для стабилизации их состояния на некотором приемлемом уровне. При правильно выполненных изысканиях, достаточной базе пространственных данных, грамотном инженерно-геологическом прогнозе, а также при хорошей организации и выполнении работ с использованием технологий ГИС негативные явления могут быть сведены к минимуму. Поэтому важно выполнять все этапы экологических изысканий, прогноза и мониторинга.
Как известно, ГИС-технологии применяются при решении задач построения многоуровневых информационных баз пространственных данных, обеспечивающих доступ ко всему комплексу ресурсов эффективным и наглядным способом. Это позволяет генерализовать информацию для успешного решения задач управления нефтепроводом, его инвентаризации и отслеживания состояния и ресурса. Кроме того, ГИС доказали свою высокую эффективность и при решении различных оперативных задач в процессе эксплуатации нефтепровода, в том числе в условиях чрезвычайных ситуаций. Исходя из этого, уже на первых стадиях проектирования нефтепровода Россия — Китай был произведен ГИС-анализ, позволяющий понять закономерности и взаимные отношения географических данных и объектов. Результаты анализа позволяют проникнуть в суть происходящего в данном месте, координировать действия и выбрать лучший вариант решения. Совместное применение ГИС и данных дистанционного зондирования резко повышает оперативность и качество решений, направленных на ликвидацию аварий и минимизацию их последствий.
364
Исследования по оценке воздействия на окружающую среду проектируемого нефтепровода включали следующие этапы:
- анализ состояния территории, на которую может оказать вли
яние намечаемая деятельность;
- выявление возможных воздействий на окружающую среду;
- оценка воздействий на окружающую среду;
- определение мероприятий, уменьшающих, смягчающих или
предотвращающих негативные воздействия;
- оценка значимости остаточных воздействий на окружающую
среду и их последствий;
- разработка программы экологического мониторинга и конт
роля на всех этапах реализации намечаемой деятельности.
Для выполнения работ по оценке экологической ситуации нефтепровода Россия—Китай был проведен многосторонний анализ информации. Разработана система экологического мониторинга для успешного проведения больших объемов комплексных строительных работ в условиях законодательных ограничений, установленных в отношении природной среды.
Система природного мониторинга содержит информацию о текущем состоянии экосистемы и взаимодействует с системой прогнозного моделирования для оценки разных сценариев строительства нефтепровода в целях достижения наиболее экономичного решения с учетом экологического критерия.
Учитывая, что основой для работы региональной ГИС экологической направленности является цифровая модель рельефа (ЦМР), построение ЦМР проводилось с учетом основных географических закономерностей. Кроме горизонталей и отметок высот учитывались реки, мелкие озера, батиметрия крупных озер, отметки урезов воды и др.
Работы с применением ГИС по анализу реальных и гипотетических ситуаций, которые могут возникнуть в процессе эксплуатации нефтепровода, проведены с использованием функций Arc View Spatial Analyst и 3D Analyst. По построенным ЦМР водосборов были определены направления водотоков, рассчитаны протяженность, площадь и объем разлива нефти в случае аварии. Это позволило скорректировать трассу нефтепровода в обход наиболее уязвимых участков. Математическая модель местности (МММ) строилась на основе ЦМР высокого разрешения и ряда тематических слоев. По ней можно в автоматизированном режиме выделять водосборные бассейны для каждой точки поверхности, рассчитывать зоны затопления (загрязнения в случае разлива нефти), дальность распространения загрязнения с учетом почвенного покрова, растительности, гранулометрического состава грунтов, температурных параметров (воздуха и грунта), наличия осадков в момент ЧС, величины снежного покрова и т.д. Такой подход к выбору трассы позволяет минимизировать риски и значи-
365
тельно уменьшить масштабы негативных последствий возможных техногенных катастроф в данном районе. Учитывая высокую сейсмичность региона, данный подход является практически единственно возможным.
ГИС в решении радиационных проблем Кольского полуострова (С.Морозов, В.Кошкин, Институт проблем промышленной экологии Севера КНЦ РАН). Как правильно отмечено авторами, для выполнения работ по оценке радиационного риска региона необходим качественный анализ доступной информации и характеристик о радиационно-опасных объектах (РОО). Помочь решению проблемы могут современные методы работы с пространственно распределенными наборами данных, в первую очередь ГИС. Работы с применением ГИС по анализу реальных и гипотетических ситуаций, возникающих на РОО, ведутся не первый год, в том числе и в нашей стране. В Кольском научном центре РАН и, в частности, в Институте проблем промышленной экологии Севера КНЦ РАН исследуются экологические аспекты радиационной проблематики Кольского полуострова и региона. Основные задачи состоят в следующем:
- используя ГИС, сделать открытые данные по РОО регио
на более наглядными и убедительными, а проблему — более
внятной;
- расширить доступ заинтересованных лиц к этим данным;
- на основе результатов компьютерного моделирования ава
рийных ситуаций на РОО и ГИС-анализа радиационного риска
территорий выполнить построение соответствующих электрон
ных карт;
- облегчить создание общего языка, интерфейса общения для
отечественных и международных заинтересованных инстанций на
всех уровнях, с целью продуктивного обсуждения проблемы и
поисков средств и способов ее решения.
В настоящее время разработана структура и некоторые предварительные блоки ГИС региона, соответствующие кругу рассматриваемых вопросов. Основная цель разработки — на основе технологии ГИС создать информационный модуль, чтобы:
- систематизировать и структурировать информацию по РОО
региона;
- анализировать радиационные проблемы в регионе;
- подготавливать исходные данные для математического моде
лирования атмосферного переноса радионуклидов и оценки риска
в районах расположения ядерных энергетических установок (ЯЭУ).
Области ее применения включают: региональные системы радиационного мониторинга и автоматизированные системы (локальные, региональные) поддержки принятия решений в случае возникновения аварии на ядерных объектах.
Информационная поддержка:
366
- природоохранных предприятий и организаций региона;
- научно-исследовательских проектов и проектно-изыскатель-
ских работ;
- органов государственного надзора и ведомств по чрезвычай
ным ситуациям.
База данных ГИС будет включать в себя объекты, сгруппированные в несколько слоев. На первом этапе были выбраны те объекты и в том объеме, которые обеспечены открытыми источниками информации: АЭС, затопленные корабли с твердыми радиоактивными отходами, места затопления ядерных реакторов, места проведения ядерных взрывов, места инцидентов с атомными подводными лодками, места запуска космических аппаратов в регионе (космодромы). Исходная информация для баз данных была получена из опубликованных источников и по результатам поиска в Интернет. В работе по конструированию ГИС использовались следующие продукты фирмы ESRI, Inc:
- Arclnfo — для создания слоев карты (со встроенной картой
мира в проекции Робинсона в качестве картографической основы);
- язык AML — для разработки интерфейса к базе данных;
- ArcExplorer 1.1 — для презентаций карт на персональном
компьютере.
Ниже приводятся краткие описания выбранных объектов.
Реакторы атомных электростанций. В базу ГИС по энергоблокам АЭС включены данные по 21 блоку 12 станций, включая Би-либинскую АЭС и Норильский экспериментальный реактор.
Предварительная версия разрабатываемой ГИС конструируется пока как локальный информационно-справочный модуль по радиационно-опасным объектам. Более перспективным является применение ГИС в региональных автоматизированных системах контроля радиационной обстановки и системах поддержки принятия решений на случай радиационных аварий. Институт проблем промышленной экологии Севера использует в настоящее время отдельные приложения ГИС-технологии для создания локальной Автоматизированной системы контроля радиационной обстановки Кольской АЭС.
ГИС все более активно используются для анализа радиационного риска региона. Это связано с тем, что используемые модели должны учитывать большие массивы важных пространственно распределенных параметров. Слияние математического моделирования с ГИС требует либо создания стандартного интерфейса между моделями и ГИС, либо разработки математических моделей в рамках ГИС-технологии. Реализованная в Arclnfo (начиная с версии 7.1.2) Открытая среда разработки приложений (ODE) позволяет объединять функциональные возможности Arclnfo и Других прикладных программ через специально создаваемые интерфейсы с использованием стандартных сред программирова-
367
ния. ODE позволила включить множество прикладных программ в пространство ГИС-технологий. В семействе продуктов ESRI, Inc есть и другие модули, необходимые для рассматриваемого класса задач. К ним относятся серверы пространственных данных, картографические серверы Интранет/Интернет, модуль для встраивания карт и функций ГИС в собственные приложения, модули для моделирования природной среды.
По мнению авторов, применение ГИС поможет успешно приступить к решению задач инвентаризации, учета и контроля за состоянием радиационно-опасных объектов и самой территории региона, а также математического моделирования связанных с ними ситуаций.
Экологическая ГИС и система экологического мониторинга в Ямало-Ненецком автономном округе (О.Розанов, Отдел экологического мониторинга Государственного комитета по охране окружающей среды ЯНАО). В основу региональной ГИС была положена электронная карта масштаба 1: 200 000, оцифрованная в системе Arclnfo в проекции Гаусса—Крюгера на эллипсоиде Красовс-кого в системе прямоугольных координат 1942 г., после чего была произведена оценка точности оцифровки, которая подтвердила соответствие метрической информации точности исходных картографических материалов. Число слоев карты и их насыщенность полностью соответствуют каждому тиражному оттиску карты. По мере развития ГИС карта дополнялась объектами месторождений, лицензионных участков, особо охраняемых территорий (заказников, заповедников), инфраструктурой. Указанная информация была собрана и собирается по сей день из различных источников и переведена в покрытия Arclnfo. Самая свежая информация по обновлению тематики карт была получена в отделе со спутника «Ре-сурс-01».
Первый этап обработки принимаемой информации заключается в просмотре изображения, географической привязке по орбитальным элементам, вырезке полезных фрагментов, коррекции привязки по реперным точкам на изображении, сохранении выбранных фрагментов и экспорте в исходные формы. Второй этап обработки снимков занимает процесс тематического дешифрирования. Практические навыки приобретались в полевых условиях Пуровского района на месторождениях Пограничное и Вынгапу-ровское. Работы по обработке снимков выполнялись программным продуктом Maplnfo. Первые результаты работы с растровыми изображениями в Maplnfo показали оперативность и достаточную простоту в определении периметра и площадей выделяемых на снимке объектов (зоны затопления, гари и др.), а также в рисовке определенных участков рельефа и техногенных нарушений, имеющих особый интерес у контролирующих служб. На этом работа в Maplnfo и заканчивалась. Затем начинались проблемы по
368
трансформированию снимков в проекцию Гаусса-Крюгера и экспортированию в систему ArcView для работы с векторной картой. Определенная помощь в трансформировании снимков была получена при работе с программой Image Transformer, разработанной в ИТЦ Сканэкс. Однако после выхода модуля ArcView Image Analysis (ERDAS) работа существенно ускорилась.
В основу экологической ГИС города Салехарда была положена электронная карта масштаба 1:10 000, дополненная путем оцифровки планшетов масштаба 1: 2000. При построении тематических слоев карты города Салехарда использовались новейшие данные застройки города, которые чаще всего предоставлялись в виде калек, планов и планшетов. Для трансформирования и привязки сканированных изображений в покрытия карты успешно использовался модуль ArcView Image Analysis. Также этот модуль был опробован для совмещения растрового изображения космоснимка зоны затопления в период половодья на реке Обь с векторной картой масштаба 1: 200 000. Благодаря удачной совместимости модуля с системой ArcView GIS были получены положительные результаты по созданию тематических цифровых карт на основе снимков и их обновлению. Таким образом, были оцифрованы материалы аэрофотосъемки, несущие в себе информацию об антропогенных нарушениях за пределами административной границы города Салехарда. Это разрабатываемые в настоящее время и старые не рекультивированные карьеры, площадки для складирования грунтов, неучтенные грунтовые дороги и тропы. Использование опорной информации по трансформированному участку местности дало возможность существенно улучшить точность геометрического преобразования без дополнительной интерполяции яркости пикселов на изображении.
Проводимая в отделе работа по использованию принимаемой спутниковой информации в ГИС региона представляет практический интерес как для контролирующих служб комитета, так и для других заинтересованных структур. Планируются совместные работы с Гидрометслужбой и службами навигации ледовой и метеорологической обстановки в Северных морях.
По причине непостоянства погодных условий Крайнего Севера, быстро сменяющих друг друга арктических циклонов и, как следствие, малого количества ясных дней, нецелесообразности приема оптических изображений в темные месяцы года весьма перспективными являются данные спутников с радарами бокового обзора (SAR), такими, как IRS и RADARS AT. А появление на вооружении мощной системы обработки данных дистанционного зондирования ERDAS Imagine позволяет отделу экологического мониторинга Государственного комитета по охране окружающей среды ЯН АО выступить инициатором широкого применения методов дистанционного зондирования в округе.
369