Конструирование радиоэлектронной геофизической аппаратуры
Вид материала | Документы |
- Конструирование радиоэлектронной геофизической аппаратуры, 376.83kb.
- Конструирование радиоэлектронной геофизической аппаратуры, 346.73kb.
- Конструирование радиоэлектронной геофизической аппаратуры, 299.74kb.
- Конструирование радиоэлектронной геофизической аппаратуры, 446.09kb.
- Конструирование радиоэлектронной геофизической аппаратуры, 385.32kb.
- Конструирование радиоэлектронной геофизической аппаратуры, 402.82kb.
- Конструирование радиоэлектронной геофизической аппаратуры, 487.83kb.
- Конструирование радиоэлектронной геофизической аппаратуры, 301.73kb.
- Конструирование радиоэлектронной геофизической аппаратуры, 330.88kb.
- Конструирование радиоэлектронной геофизической аппаратуры, 221.3kb.
Заготовки плат, закрепленные на специальных подвесках - токоподводах, помещают в гальваническую ванну с электролитом. Режим электрохимической металлизации выбирают таким образом, чтобы при высокой производительности были обеспечены равномерность толщины покрытия и его адгезия.
Равномерность толщины осажденных слоев зависит от: 1) габаритных размеров металлизируемых плат (с увеличением ПП равномерность покрытий снижается, что может быть частично скомпенсировано увеличением расстояния между анодами); 2) диаметров металлизируемых отверстий (отношение диаметров к толщине платы должно быть не менее 1/3); 3) расположения плат в ванне (для улучшения равномерности платы размещают симметрично и параллельно анодам, площадь которых должна в 2-3 раза превышать площадь металлизации при расстоянии между электродами не менее 150 мм); 4) оптимальной плотности тока (при низких значениях уменьшается толщина покрытия в центре платы, при высоких происходит утолщение покрытия на углах и кромках платы); 5) наличия специальных экранов между электродами.
Адгезия гальванического покрытия зависит от качества подготовки поверхности под металлизацию, длительности перерыва между подготовкой поверхности и нанесением покрытия, от соблюдения режимов процесса.
Для меднения ПП применяют различные электролиты. Рекомендуют для предварительной металлизации борфтористоводородный электролит следующего состава (г/л): Cu(BF4)2 – 230-250, HBF4 – 5-15, Н3ВО3 – 15-40. Процесс ведут при температуре 20±5 °С, плотности тока 3-4 А/дм2 скорости осаждения 25-30 мкм/ч. Более пластичные и равномерные осадки получаются в сернокислых электролитах. Для улучшения рассеивающей способности в электролит добавляются выравнивающие добавки, а процесс ведут непрерывной подачей свежего раствора меднения непосредственно в сквозные отверстия. Сернокислый электролит имеет состав (г/л); CuS04-5 H20 – 100-200, H2S04 – 150-180, NaCl - 0,03-0,06.
Электролитический сплав олово-свинец должен иметь состав, приближающийся к эвтектическому, что обеспечит последующее оплавление при минимальной температуре и хорошую паяемость ПП. Это достигается выбором оптимального режима осаждения и строгим его поддержанием. Содержание олова в осадке возрастает при понижении плотности тока, увеличении количества вводимых добавок, снижении температуры электролита, увеличении олова в электролите и сильном его перемешивании.
Повышение объемов производства и требований к качеству ПП, усложнение аппаратуры и ее микроминиатюризация требуют развития перспективных методов электрохимической металлизации и производительного технологического оборудования. Одним из эффективных путей улучшения качества покрытий является использование нестационарных режимов электролиза. Осаждение металла в этом случае проводится под действием периодических токов - импульсного, реверсивного, произвольной формы различной частоты и скважности. Под действием реверсивного тока происходит сглаживание микрорельефа покрытия, повышается его равномерность по поверхности платы и в монтажных отверстиях. Это объясняется тем, что во время прямого импульса происходит осаждение металла, а во время обратного - преимущественное растворение выступающих участков. Одновременно снижаются внутренние напряжения в покрытиях, повышается их пластичность.
При импульсном токе измельчается структура покрытия (кристалл растет во время импульса тока и пассивируется во время паузы), уменьшается пористость, повышается электропроводность покрытия вследствие совершенства структуры и уменьшения включаемых в осадок примесей. Наибольшей эффективностью обладает оборудование, обеспечивающее программное ведение процесса. Оно позволяет на основании модели ТП автоматически изменять форму тока, его амплитуду, частоту, скважность и все временные параметры.
Формирование рисунка печатных плат. Нанесение рисунка схемы на ПП необходимо для получения защитной маски требуемой конфигурации при осуществлении процессов металлизации и травления. Наиболее распространены в промышленности сеткографический (офсетной печати) и фотохимический методы.
Сеткографический метод получения рисунка ПП основан на применении специальных кислотостойких быстросохнущих красок, которые после продавливания через трафарет закрепляются на поверхности заготовки в результате испарения растворителя. Основными видами специальных трафаретных красок являются следующие: защитные щелочесмываемые; защитные гальваностойкие, смываемые органическим растворителем (хлористым метиленом). Для получения маркированных знаков используются трафаретные пентафталевые краски.
Качество наносимого защитного слоя определяется вязкостью используемых трафаретных красок. Ее оптимальная величина устанавливается исходя из температуры, номера сетки, характера изображения, наличия орошения формы и др. При оптимальном значении вязкости краска не должна самопроизвольно растекаться ни по печатной форме, ни по заготовке, должна легко и равномерно растекаться под воздействием ракеля и продавливаться сквозь отверстия печатающих элементов формы.
Ракель обычно изготавливают из листовой маслобензостойкой резины толщиной около 8 мм и высотой не менее 25 мм. Тщательно отполированная поверхность ракеля обеспечивает высокое качество.
Заготовка в станках трафаретной печати устанавливается с технологическим зазором 2-3 мм. Увеличение зазора приводит к повышению четкости рисунка, но одновременно повышается износ сетки. Постепенный отрыв сетки от заготовки в процессе нанесения рисунка уменьшает и его искажение, и износ сетки. Нанесение защитной краски через сетчатый трафарет осуществляется автоматическим оборудованием, которое включает загрузочное устройство, машину для рихтовки плат, сеткографический станок, сушильную печь, накопитель готовых изделий.
Загрузка ПП в станок происходит посредством ленточного конвейера. Подведенная заготовка фиксируется в рабочей зоне на штифтах с точностью ±25 мкм и закрепляется при помощи вакуумной системы. Краскодозирующим устройством краска подается в зону обработки, а ракель продавливает ее через ячейки трафарета. В системе управления ракелем регулируется угол наклона, скорость движения, давление и диапазон хода. Время, затрачиваемое на один цикл печатания, составляет 5-7 с. Смена трафарета и настройка станка на новый тип плат производится по контрольному шаблону. В станках для одновременного нанесения рисунка на две стороны заготовки ПП устанавливается вертикально.
Закрепление краски на заготовке осуществляется сушкой. Краски с органическими растворителями сушат в туннельных конвейерных печах горячим воздухом при температуре 150-180 °С или под действием ИК-излучения. Краски мгновенной сушки, содержащие мономерно - полимерные композиции и фотоинициатор, закрепляются под воздействием ультрафиолетовых лучей. Однако они имеют небольшой срок хранения и высокую стоимость.
Срок хранения отпечатанных плат в условиях производства составляет 3-5 суток. При больших сроках хранения становится затруднительным удаление краски. Снимают трафаретную краску 3-5%-ным раствором горячей (40-60°С) щелочи в течение 10-20 с. Аналогично промываются сетчатые трафареты после работы.
Фотографический метод предусматривает нанесение на поверхность заготовки ПП специальных светочувствительных материалов - фоторезистов, негативных или позитивных. Негативные фоторезисты образуют при воздействии света защитные маски вследствие реакции фотополимеризации, при этом облученные участки остаются на плате, а необлученные удаляются при проявлении. В позитивных фоторезистах под действием света происходит фотодеструкция органических молекул, облученные участки удаляются при проявлении. Фоторезисты могут быть жидкими и пленочными. Жидкие фоторезисты значительно дешевле пленочных, для работы с ними требуется несложное оборудование. Применение пленочных фоторезистов значительно упрощает ТП (исключаются операции сушки, дубления, ретуширования) и обеспечивает нанесение защитных слоев при наличии монтажных отверстий.
Жидкие позитивные фоторезисты на основе диазосоединений имеют повышенную разрешающую способность, химическую стойкость, в них отсутствует темновое дубление. Наносят жидкие фоторезисты окунанием, центрифугированием, накаткой валками, разбрызгиванием. При покрытии окунанием заготовки погружаются в кювету с фоторезистом и вытягиваются с постоянной скоростью (10-50 см/мин). Толщина слоя определяется вязкостью, скоростью вытягивания и колеблется от 4 до 8 мкм. Способ обеспечивает двустороннее нанесение фоторезиста. Недостатком является неравномерность нанесенного слоя. Применение центрифугирования и накатки валками приводит к повышению равномерности наносимых слоев. Валковые конвейерные установки имеют секции инфракрасной сушки резиста.
Сухие пленочные фоторезисты (СПФ) представляют собой структуру, состоящую из светочувствительного слоя, который помещается между защитной полиэтиленовой и светопроницаемой лавсановой пленками. Типичная толщина СПФ 20, 40 и 60 мкм, защитных СПФЗ 90, 110, 130 мкм. Тонкие слои СПФ применяют в качестве маски при травлении меди с пробельных мест, средние - для создания рисунка при нанесении слоя металлизации, а толстые - для защиты отверстий с металлизацией при травлении. Фоторезисты наносят на платы валковым методом при нагреве до 105-120 °С и плотно прикатывают к поверхности заготовки для удаления воздушных включений. Реализующие этот метод установки называются ламинаторами. Они снабжены терморегуляторами, тарированными устройствами прижима подающих валков, устройствами для обеспечения давления на заготовку и обрезания фоторезиста после его нанесения.
Экспонирование предназначено для инициирования фотохимических реакций в фоторезистах. Оно проводится в установках, состоящих из источников света, работающих в ультрафиолетовой области, рефлекторов и коллиматоров. Для плотного прилегания фотошаблонов к заготовкам плат используют рамы, оснащенные специальными откачными системами для создания вакуума.
Для проявления СПФ используют два вида установок: камерные для мелкосерийного производства и конвейерные для серийного производства. Камерные установки имеют насос для подачи проявителя под давлением, систему струйной промывки, змеевики охлаждения проявителя, таймеры, систему терморегулирования и устройства фильтрации проявителя. Конвейерные установки имеют зоны загрузки, первичного проявления, допроявления и промывки плат. Установки оснащены регуляторами скорости конвейера и давления жидкости, системами охлаждения и терморегулирования, основными и вспомогательными насосами фильтрации жидкости и отстойниками промывных вод.
После проявления оставшийся фоторезист должен быть твердым, блестящим, сплошным покрытием на поверхности заготовки с хорошей адгезией к ней, без проколов и других дефектов.
Травление меди с пробельных мест представляет собой сложный окислительно-восстановительный процесс удаления меди с непроводящих (пробельных) участков. Травление выполняют химическим или электрохимическим способом. Для химического процесса разработаны и используются в промышленности многочисленные составы на основе хлорного железа, персульфата аммония, хлорной меди, хромовой кислоты, и др. Выбор травильного раствора определяется типом применяемого резиста, скоростью травления, величиной бокового подтравливания, возможностью регенерации и экономичностью процесса.
Скорость травления меди зависит от состава травителя, условий его доставки в зону обработки, температуры раствора и количества меди, перешедшей в раствор. Скорость травления оказывает существенное влияние на качество формируемых элементов ПП. При малых скоростях время пребывания платы в травителе увеличивается, что приводит к ухудшению диэлектрических свойств оснований и увеличению бокового подтравливания. Величина бокового подтравливания оценивается фактором травления K=S/a, который представляет собой отношение толщины фольги S к величине изменения ширины печатного проводника а. Уменьшают фактор травления введением в используемые растворы специальных добавок: ионы металлов с более низким потенциалом, чем у меди (Ag, Hg, Pt, Pd, Au).
Технологический процесс травления состоит из операций предварительной очистки меди, повышающей равномерность ее удаления, непосредственно удаления меди с пробельных участков платы, очистки поверхности диэлектрика, осветления при необходимости поверхности металлорезиста и сушки.
Наибольшее распространение в технологии производства ПП получили травильные растворы на основе хлорного железа. Они отличаются высокой и равномерной скоростью травления, малой величиной бокового подтравливания, высокой четкостью получаемых контуров, экономичностью. Скорость процесса в свежеприготовленном растворе составляет 40 мкм/мин, но по мере накопления в нем ионов меди постепенно снижается и при 100 г/л составляет 5-6 мкм/мин. Повышение температуры и рН травителя относительно оптимальных значений приводит к образованию смеси фильтрующейся меди и оксида железа, который адсорбируется поверхностью диэлектрика, с трудом удаляется при промывке и ухудшает изоляционные свойства подложки.
Травитель не пригоден для получения плат, покрытых металлорезистами на основе олова. В этом случае рекомендуется применять раствор персульфата аммония. Он дешевле хлорного железа, быстро приготавливается на рабочем месте, прозрачен и невязок, не образует шлама при травлении, легко поддается регенерации. Реакция сопровождается выделением тепла, что вызывает необходимость стабилизации температурного режима. Травление приводит к большому боковому подтравливанию медных проводников, сопровождается зубчатостью краев из-за различия скоростей химических реакций по зернам металла, а раствор склонен к саморазложению.
Стабильными параметрами травления характеризуются растворы на основе хлорной меди. Разработанные кислые и щелочные составы несколько уступают по скорости растворам хлорного железа, но намного их дешевле. В них не образуется шлам, ПП легко отмываются по после обработки, а боковое подтравливание не превышает 3-6 мкм. Отсутствие в растворе посторонних катионов позволяет проводить полную регенерацию в непрерывном замкнутом цикле. Повышение производительности процесса достигается использованием раствора на основе двух окислителей - хлорной меди и хлорного железа.
Травление меди в растворе перекиси водорода проводится в кислый среде с добавлением серной или соляной кислоты. Используемые травители совместимы практически со всеми типами резистов. Получаемая H2S04 является химически чистым веществом, легко извлекается и используется для технических целей. При накоплении 60-80 кг/м2 меди раствор истощается и скорость травления снижается. Полезную емкость по меди до 130 кг/м2 имеют соляно-кислые растворы. В них травящей способностью обладают не только исходные компоненты, но и продукты реакции. Процесс травления сопровождается поддержанием состава ванны и разложением перекиси водорода.
Химическое удаление меди проводится погружением ПП в травитель, наплескиванием раствора на их поверхность или разбрызгиванием через форсунки. Давление раствора в форсунках колеблется в пределах 0,1-0,5 МПа, а струя подается перпендикулярно поверхности платы или при небольшом отклонении от перпендикуляра. Постоянное обновление окислителя в зоне обработки и удаление продуктов реакции обеспечивают высокую производительность струйному травлению, а траектория струи - незначительное боковое подтравливание. Производительное технологическое оборудование компонуется по модульному принципу и содержит модули травления, регенерации, промывки, осветления и сушки, которые объединяются транспортной системой и системой трубопроводов. Автоматические модульные линии конвейерного типа оснащаются устройствами для контроля кислотности раствора, его температуры и давления в форсунках.
Электрохимическое травление ПП основано на анодном растворении меди с последующим восстановлением ионов стравленного металла на катоде. Такой процесс по сравнению с химическим травлением обладает рядом преимуществ: упрощением состава электролита, методики его приготовления, регенерации и очистки сточных вод, высокой и стабильной скоростью травления в течение длительного периода времени, экономичностью, легкостью управления и автоматизацией всех стадий.
Широкое применение электрохимического травления сдерживается неравномерностью удаления металла по плоскости платы, что приводит к образованию невытравленных островков. Полностью реализовать преимущества электрохимического метода позволяют подвижные носители заряда, которые представляют собой частицы графита в суспензированном электролите. Эти частицы принимают заряд с анода и переносят его на поверхность меди, переводя последнюю в ионную форму. Использование электрохимического травления сводит к минимуму боковое подтравливание токопроводящих дорожек и обеспечивает разрешающую способность, равную 70-100 мкм, но стоимость технологического оборудования превышает стоимость машин для химического травления.
После удаления меди с пробельных участков ПП промывают холодной проточной водой. Если на поверхности металлических резистов (особенно Sn-Pb) в результате химического взаимодействия с травителем образуются нерастворимые соединения, вызывающие потемнение и ухудшение их паяемости, то их осветляют при температуре 18-25 °С в течение 3-5 мин. Растворы осветления готовят на основе кислот и тиомочевины, например (г/л): соляная кислота – 50-60, тиомочевина – 90-100, этиловый спирт – 5-6, моющее средство или поверхностно-активное вещество – 1-10.