Конструирование радиоэлектронной геофизической аппаратуры

Вид материалаДокументы
Подобный материал:
1   2   3
Гальваническая металлизация при производстве ПП приме­няется для усиления слоя химической меди, нанесения металли­ческого резиста (например, олово - свинец толщиной 8-20 мкм с целью предохранения проводящего рисунка при травлении плат, защиты его от коррозии и обеспечения хорошей паяемости), соз­дания на части проводящего рисунка (например, на концевых печатных контактах) специальных покрытий (палладий, золото, родий и т. п.) толщиной 2-5 мкм. Основой для гальванической металлизации является водный раствор солей металла, содержащий осаждаемый материал в виде положительно заряженных ионов. Необходимые для восстановления электроны поступают от внешнего источника постоянного тока. Под действием внешнего напряжения ионы металла движутся к катоду, присоединяют электроны и осаждаются на нем как нейтральные атомы. Примером может служить восстановление меди: Cu2+ + 2e- → Cu. Катодом является предмет, подлежащий покрытию, например ПП. В качестве анода преимущественно используют осаждаемый материал, реже – не растворяющийся платиновый или стальной электрод. Процессы, происходящие на аноде и катоде, имеют сложный характер. Их определяют реакции переноса, проникновения и адсорбции, которые, в свою очередь, зависят от концентрации компонентов ванны и температуры.

Заготовки плат, закрепленные на специальных подвесках - токоподводах, помещают в гальвани­ческую ванну с электролитом. Режим электрохимической металлизации вы­бирают таким образом, чтобы при высокой производительности были обеспечены равномерность толщины покрытия и его адгезия.

Равномерность толщины осажденных слоев зависит от: 1) габаритных размеров металлизируемых плат (с увеличе­нием ПП равномерность покрытий снижается, что может быть частич­но скомпенсировано увеличением расстояния между анодами); 2) диаметров металлизируемых отверстий (отношение диа­метров к толщине платы должно быть не менее 1/3); 3) располо­жения плат в ванне (для улучшения равномерности платы раз­мещают симметрично и параллельно анодам, площадь которых должна в 2-3 раза превышать площадь металлизации при рас­стоянии между электродами не менее 150 мм); 4) оптимальной плотности тока (при низких значениях уменьшается толщина покрытия в центре пла­ты, при высоких происходит утолщение покрытия на углах и кромках платы); 5) наличия специальных экранов между электродами.

Адгезия гальванического покрытия зависит от качества подго­товки поверхности под металлизацию, длительности перерыва между подготовкой поверхности и нанесением покрытия, от со­блюдения режимов процесса.

Для меднения ПП применяют различные электролиты. Рекомендуют для предварительной металлиза­ции борфтористоводородный электролит следующего состава (г/л): Cu(BF4)2 – 230-250, HBF4 – 5-15, Н3ВО3 – 15-40. Процесс ведут при температуре 20±5 °С, плотности тока 3-4 А/дм2 скорости осаждения 25-30 мкм/ч. Более пластичные и равномерные осадки получаются в серно­кислых электролитах. Для улучшения рассеивающей способности в электролит добавляются выравнивающие добавки, а процесс ведут непрерывной подачей свежего раствора меднения непосредственно в сквозные отверстия. Сернокислый электролит имеет состав (г/л); CuS04-5 H20 – 100-200, H2S04 – 150-180, NaCl - 0,03-0,06.

Электролитический сплав олово-свинец должен иметь состав, приближающийся к эвтектическому, что обеспечит последующее оплавление при минимальной температуре и хорошую паяемость ПП. Это достигается выбором оптимального режима осаждения и строгим его поддержанием. Содержание олова в осадке возрас­тает при понижении плотности тока, увеличении количества вво­димых добавок, снижении температуры электролита, увеличении олова в электролите и сильном его перемешивании.

Повышение объемов производства и требований к качеству ПП, усложнение аппаратуры и ее микроминиатюризация требуют развития перспективных методов электрохимической металлиза­ции и производительного технологического оборудования. Одним из эффективных путей улучшения качества покрытий является использование нестационарных режимов электролиза. Осаждение металла в этом случае проводится под действием периодических токов - импульсного, реверсивного, произвольной формы различ­ной частоты и скважности. Под действием реверсивного тока про­исходит сглаживание микрорельефа покрытия, повышается его равномерность по поверхности платы и в монтажных отверстиях. Это объясняется тем, что во время прямого импульса происходит осаждение металла, а во время обратного - преимущественное растворение выступающих участков. Одновременно снижаются внутренние напряжения в покрытиях, повышается их пластич­ность.

При импульсном токе измельчается структура покрытия (кри­сталл растет во время импульса тока и пассивируется во время паузы), уменьшается пористость, повышается электропроводность покрытия вследствие совершенства структуры и уменьшения включаемых в осадок примесей. Наибольшей эффектив­ностью обладает оборудование, обеспечивающее программное ведение процесса. Оно позволяет на основании модели ТП автоматически изменять форму тока, его амплитуду, частоту, скважность и все временные параметры.

Формирование рисунка печатных плат. Нанесение рисунка схемы на ПП необходимо для получения защитной маски требуемой конфигурации при осуществлении процессов металлизации и травления. Наиболее распространены в промышленности сеткографический (офсетной печати) и фото­химический методы.

Сеткографический метод получения рисунка ПП основан на применении специальных кислотостойких быстросохнущих кра­сок, которые после продавливания через трафарет закрепляются на поверхности заготовки в результате испарения растворителя. Основными видами специальных трафаретных красок являют­ся следующие: защитные щелочесмываемые; защитные гальваностойкие, смываемые органическим растворителем (хло­ристым метиленом). Для получения маркированных знаков используются трафаретные пентафталевые краски.

Качество наносимого защитного слоя определяется вязкостью используемых трафаретных красок. Ее оптимальная величина устанавливается исходя из температуры, номера сетки, характера изображения, наличия орошения формы и др. При оптимальном значении вязкости краска не должна самопроизвольно растекаться ни по печатной форме, ни по заго­товке, должна легко и равномерно растекаться под воздей­ствием ракеля и продавливаться сквозь отверстия печатающих элементов формы.

Ракель обычно изготавливают из листовой маслобензостойкой резины толщиной около 8 мм и высотой не ме­нее 25 мм. Тщательно отполированная поверхность ракеля обес­печивает высокое качество.

Заготовка в станках трафаретной печати устанавливается с технологическим зазором 2-3 мм. Увеличение зазора приво­дит к повышению четкости рисунка, но одновременно повышается износ сетки. Постепенный отрыв сетки от заготовки в процессе нанесения рисунка уменьшает и его искажение, и износ сетки. Нанесение защитной краски через сетчатый трафарет осуществляется автоматическим оборудованием, которое включает загрузочное устройство, машину для рихтовки плат, сеткографический станок, сушильную печь, накопитель готовых изделий.

Загрузка ПП в станок происходит посредством ленточного конвейера. Подведенная заготов­ка фиксируется в рабочей зоне на штифтах с точностью ±25 мкм и закрепляется при помощи вакуумной системы. Краскодозирующим устройством краска подается в зону обработки, а ракель продавливает ее через ячейки трафарета. В системе управления ракелем регулируется угол наклона, ско­рость движения, давление и диапазон хода. Время, затрачиваемое на один цикл печатания, составляет 5-7 с. Смена трафарета и настройка станка на новый тип плат производится по контроль­ному шаблону. В станках для одновременного нанесения рисунка на две стороны заготовки ПП устанавливается вертикально.

Закрепление краски на заготовке осуществляется сушкой. Краски с органическими растворителями сушат в туннельных конвейерных печах горячим воздухом при температуре 150-180 °С или под действием ИК-излучения. Краски мгновенной сушки, содержащие мономерно - полимерные композиции и фотоинициатор, закрепляются под воздействием ультрафиолетовых лучей. Однако они имеют не­большой срок хранения и высокую стоимость.

Срок хранения отпечатанных плат в условиях производства составляет 3-5 суток. При больших сроках хранения стано­вится затруднительным удаление краски. Снимают трафаретную краску 3-5%-ным раствором горячей (40-60°С) щелочи в течение 10-20 с. Аналогично промываются сетчатые трафареты после работы.

Фотографический метод предусматривает нанесение на поверхность заготовки ПП специальных светочувстви­тельных материалов - фоторезистов, негативных или позитивных. Негативные фоторезисты образуют при воздействии света защитные маски вследствие реакции фотополимеризации, при этом облученные участки остаются на плате, а не­облученные удаляются при проявлении. В позитивных фоторези­стах под действием света происходит фотодеструкция органиче­ских молекул, облученные участки удаляются при проявлении. Фоторезисты могут быть жидкими и пленоч­ными. Жидкие фоторезисты значительно дешевле пленочных, для работы с ними требуется несложное оборудование. Примене­ние пленочных фоторезистов значительно упрощает ТП (исклю­чаются операции сушки, дубления, ретуширования) и обеспечивает нанесение защитных слоев при наличии монтажных отверстий.

Жидкие позитивные фоторезисты на основе диазосоединений имеют повышенную разрешающую способность, химическую стойкость, в них отсутствует темновое дубление. Нано­сят жидкие фоторезисты окунанием, центрифугированием, накат­кой валками, разбрызгиванием. При покрытии окунанием заго­товки погружаются в кювету с фоторезистом и вытягиваются с постоянной скоростью (10-50 см/мин). Толщина слоя опре­деляется вязкостью, скоростью вытягивания и колеблется от 4 до 8 мкм. Способ обеспечивает двустороннее нанесение фоторезиста. Недостатком является неравномерность нанесенного слоя. Применение центри­фугирования и накатки валками приводит к повышению равно­мерности наносимых слоев. Валковые кон­вейерные установки имеют секции инфракрасной сушки резиста.

Сухие пленочные фоторезисты (СПФ) представляют собой структуру, состоящую из свето­чувствительного слоя, который помещается между защитной поли­этиленовой и светопроницаемой лавсановой пленками. Типичная толщина СПФ 20, 40 и 60 мкм, защитных СПФЗ 90, 110, 130 мкм. Тонкие слои СПФ применяют в качестве маски при травлении меди с пробельных мест, сред­ние - для создания рисунка при нанесении слоя металлизации, а толстые - для защиты отверстий с металлизацией при травле­нии. Фоторезисты наносят на платы валковым методом при нагреве до 105-120 °С и плотно прикатывают к поверхно­сти заготовки для удаления воздушных включений. Реализующие этот метод установки называются ламинаторами. Они снабжены терморегуляторами, тарированными устройствами прижима по­дающих валков, устройствами для обеспечения давления на заготовку и обрезания фоторезиста после его нанесения.

Экспонирование предназначено для инициирования фотохими­ческих реакций в фоторезистах. Оно проводится в установках, состоящих из источников света, работающих в ультрафиолетовой области, рефлекто­ров и коллиматоров. Для плотного прилегания фотошаблонов к заготовкам плат используют рамы, оснащенные специальными откачными системами для создания ва­куума.

Для проявления СПФ используют два вида установок: камер­ные для мелкосерийного производства и конвейерные для серий­ного производства. Камерные установки имеют насос для подачи проявителя под давлением, систему струйной промывки, змеевики охлаждения проявителя, таймеры, систему терморегулирования и устрой­ства фильтрации проявителя. Конвейерные уста­новки имеют зоны загрузки, первичного проявления, допроявления и промывки плат. Установки оснащены регуляторами скорости конвейера и давления жидкости, системами охлаж­дения и терморегулирования, основными и вспомогательными на­сосами фильтрации жидкости и отстойниками промывных вод.

После проявления оставшийся фоторезист должен быть твер­дым, блестящим, сплошным покрытием на поверхности заготов­ки с хорошей адгезией к ней, без проколов и других дефектов.

Травление меди с пробельных мест представляет собой сложный окислительно-восста­новительный процесс удаления меди с не­проводящих (пробельных) участков. Травление выполняют хими­ческим или электрохимическим способом. Для химического про­цесса разработаны и используются в промышленности многочис­ленные составы на основе хлорного железа, персульфата аммония, хлорной меди, хромовой кислоты, и др. Выбор травильного раствора определяется типом применяемого резиста, скоро­стью травления, величиной бокового подтравливания, возможностью регенерации и экономичностью процесса.

Скорость травления меди зависит от состава травителя, условий его доставки в зону обра­ботки, температуры раствора и количества меди, перешедшей в раствор. Скорость травления оказывает существенное влияние на качество формируемых элементов ПП. При малых скоростях время пребывания платы в травителе увеличивается, что приво­дит к ухудшению диэлектрических свойств оснований и увеличе­нию бокового подтравливания. Величина бокового подтравливания оценивается фактором травления K=S/a, который представляет со­бой отношение толщины фольги S к величине изменения ширины печатного проводника а. Уменьшают фактор травления введением в используемые растворы специальных добавок: ионы металлов с более низким потенциалом, чем у меди (Ag, Hg, Pt, Pd, Au).

Технологический процесс травления состоит из операций предва­рительной очистки меди, повышающей равномерность ее удале­ния, непосредственно удаления меди с пробельных участков пла­ты, очистки поверхности диэлектрика, осветления при необходимо­сти поверхности металлорезиста и сушки.

Наибольшее распространение в технологии производства ПП получили травильные растворы на основе хлорного железа. Они отличаются высокой и равномерной скоростью травления, малой величиной бокового подтравливания, высокой четкостью получаемых контуров, экономичностью. Скорость процесса в свежеприготовленном растворе составля­ет 40 мкм/мин, но по мере накопления в нем ионов меди постепен­но снижается и при 100 г/л составляет 5-6 мкм/мин. Повышение температуры и рН травителя относительно оптимальных значений приводит к образованию смеси фильтрующейся меди и оксида железа, который адсорбируется поверхностью диэлектрика, с трудом удаляется при промывке и ухудшает изоляционные свойства подложки.

Травитель не пригоден для получения плат, покрытых металлорезистами на основе олова. В этом случае рекомендуется применять раствор персульфата аммония. Он дешевле хлорного железа, быстро при­готавливается на рабочем месте, прозрачен и невязок, не образует шлама при травлении, легко поддается регенерации. Реакция сопровождается выделением тепла, что вызывает необхо­димость стабилизации температурного режима. Травление приво­дит к большому боковому подтравливанию медных проводников, сопровождается зубчатостью краев из-за различия скоростей хи­мических реакций по зернам металла, а рас­твор склонен к саморазложению.

Стабильными параметрами травления характеризуются рас­творы на основе хлорной меди. Разработанные кислые и щелочные составы несколько уступают по скорости растворам хлорного же­леза, но намного их дешевле. В них не образуется шлам, ПП легко отмываются по после обработки, а боковое подтравливание не пре­вышает 3-6 мкм. Отсутствие в растворе посторонних катионов позволяет проводить полную регенерацию в непрерыв­ном замкнутом цикле. Повышение производительности процесса достигается использованием раствора на основе двух окислите­лей - хлорной меди и хлорного железа.

Травление меди в растворе перекиси водорода проводится в кислый среде с добавлением серной или соляной кислоты. Используемые травители совместимы практически со всеми типами резистов. Получаемая H2S04 является химически чистым веществом, лег­ко извлекается и используется для технических целей. При накоп­лении 60-80 кг/м2 меди раствор истощается и скорость травления снижается. Полезную емкость по меди до 130 кг/м2 имеют соляно-кислые растворы. В них травящей способностью обладают не только ис­ходные компоненты, но и продукты реакции. Процесс травления сопровождается поддержанием со­става ванны и разложением перекиси водорода.

Химическое удаление меди проводится погружением ПП в тра­витель, наплескиванием раствора на их поверхность или разбрыз­гиванием через форсунки. Давление раствора в форсунках колеблется в пределах 0,1-0,5 МПа, а струя подается перпендикулярно поверхности платы или при небольшом отклоне­нии от перпендикуляра. Постоянное обновление окислителя в зоне обработки и удаление продуктов реакции обеспечивают высокую производительность струйному травлению, а траектория струи - незначительное боковое подтравливание. Производительное технологическое оборудование компонуется по модульному принципу и содержит модули травления, регенера­ции, промывки, осветления и сушки, которые объединяются транс­портной системой и системой трубопроводов. Автоматические модульные линии конвейерного типа оснащаются устройствами для контроля кислотности раствора, его температуры и давления в форсунках.

Электрохимическое травление ПП основано на анодном раство­рении меди с последующим восстановлением ионов стравленного металла на катоде. Такой процесс по сравнению с химическим травлением обладает рядом преимуществ: упрощением состава электролита, методики его приготовления, регенерации и очистки сточных вод, высокой и стабильной скоростью травления в течение дли­тельного периода времени, экономич­ностью, легкостью управления и авто­матизацией всех стадий.

Широкое применение электрохи­мического травления сдерживается неравномерностью удаления металла по плоскости платы, что приводит к образованию невытравленных островков. Полностью реализовать преимущества электрохимического метода позволяют подвижные носители заряда, которые представ­ляют собой частицы графита в суспензированном электролите. Эти частицы принимают заряд с анода и переносят его на поверхность меди, переводя последнюю в ионную форму. Использование электрохимического травления сводит к минимуму боковое подтравливание токопроводящих дорожек и обеспечивает разрешающую спо­собность, равную 70-100 мкм, но стоимость технологического оборудования превышает стоимость машин для химического трав­ления.

После удаления меди с пробельных участков ПП промывают холодной проточной водой. Если на поверх­ности металлических резистов (особенно Sn-Pb) в результате химического взаимодействия с травителем образуются нераство­римые соединения, вызывающие потемнение и ухудшение их паяемости, то их осветляют при температуре 18-25 °С в течение 3-5 мин. Растворы осветления готовят на основе кислот и тиомочевины, например (г/л): соляная кислота – 50-60, тиомочевина – 90-100, этиловый спирт – 5-6, моющее средство или поверхностно-активное вещество – 1-10.