Локальные сети ЭВМ. Способы связи ЭВМ между собой
Вид материала | Документы |
- Александр Дмитриевич Букин Занятия на практикум, 37.9kb.
- Реферат по теме: "Локальные сети", 254.37kb.
- Рабочая программа по дисциплине "Схемотехника эвм" для специальности 22. 01 "эвм, комплексы,, 87.32kb.
- 1 История развития компьютерной техники, поколения ЭВМ и их классификация Развитие, 1329.92kb.
- Малых ЭВМ (СМ эвм), 153.2kb.
- Руководство по изучению дисциплины «Локальные сети эвм», 1457.25kb.
- В. В. Синьков г. Тольятти 2010, 465.55kb.
- Лекция Введение в дисциплину Характеристики сетей ЭВМ, 384.76kb.
- Компьютерные сети и телекоммуникации, 122.28kb.
- Учебно- методический комплекс по дисциплине (название) "Сети ЭВМ и средства телекоммуникаций", 716.43kb.
Волоконно-оптические кабели (Таненбаум стр. 122-124 + конспект)
По волоконнооптическим кабелям передаются не электрические сигналы, а световые волны. Полоса пропускания сигнала очень широка, частота более 1 МГц, в связи с чем скорость передачи достигает Гб/с.
Для оконцовки волоконнооптического кабеля используются специальные оптические разъемы. Оборудование для оконцевания выпускают всего 3 компании в мире.
Оптоволоконная система передачи данных состоит из трех основных компонентов: источника света, носителя, по которому распространяется световой сигнал, и приемника сигнала, или детектора. Световой импульс принимают за единицу, а отсутствие импульса – за ноль. Свет распространяется в сверхтонком стеклянном волокне. При попадании на него света детектор генерирует электрический импульс. Присоединив к одному концу волокна источник света, а к другому – детектор, мы получим однонаправленную систему передачи данных. Система принимает электрические сигналы и преобразует их в световые импульсы, передающиеся по волокну. На другой стороне происходит обратное преобразование в электрические сигналы.
Такая передающая система была бы бесполезна, если бы свет по дороге рассеивался и терял свою мощность. Однако здесь используется интересный закон физики. Когда луч света переходит из одной среды в другую, луч отклоняется на границе сред. Соотношение углов падения и отражения зависит от свойств смежных сред (в частности, от их коэффициентов преломления). Если угол падения превосходит некоторую критическую величину, луч света целиком отражается обратно в стекло, а в смежную среду ничего не проходит. Таким образом, луч света, падающий на границу сред под углом, превышающим критический, оказывается запертым внутри волокна и может быть передан на большое расстояние почти без потерь.
Поскольку любой луч с углом падения, превышающим критический, будет отражаться от стенок волокна, то и множество лучей будет одновременно отражаться под различными углами. Про каждый луч говорят, что он обладает некоторой модой, а оптическое волокно, обладающее свойством передавать сразу несколько лучей, называют многомодовым.
Однако если уменьшить диаметр волокна до нескольких длин волн света, то волокно начинает действовать подобно волноводу, и свет может двигаться только по прямой линии, без отражений от стенок волокна. Такое волокно называется одномодовым.
Одномодовые кабели сделаны из более качественного материала, используются на магистральных линиях связи. Длина волны – 850-1150нм. Скорость передачи по одномодовому кабелю достигает на сегодняшний день до 50 Гбит/с на расстоянии до 100 км. В лабораториях были достигнуты и большие скорости, правда, на меньших дистанциях.
Многомодовые кабели: скорость меньше за счет того, что передаются несколько волн одновременно. Расстояние – до 1,5 км. Дешевле, легче оконцовывать. Используются для локальных соединений.
Состоят из кристаллов двуокиси кремния.
Спутниковая связь (конспект лекций)
Используют для передачи также радиочастотные сигналы (1,5 ГГц – 20 ГГц). Выделяются отдельно по своему построению, но по своему принципу аналогичны радиочастотному соединению.
Работает тот спутник, который находится в данный момент над соответствующей точкой Земли.
Спутники движутся с той же скоростью, что и Земля – геостационарная орбита.
Спутники связаны между собой и находятся в одном и том же положении по отношению к Земле.
Билет№11 Кабельные системы сетей ЭВМ. Радиорелейные и инфракрасные каналы.
Радиорелейные линии связи (РРЛ) предназначены для передачи сигналов в диапазонах дециметровых, сантиметровых и миллиметровых волн. Передача ведется через систему ретрансляторов, расположенных на расстоянии прямой видимости. Ретрансляторы осуществляют прием сигнала, усиление его, обработку и передачу на следующий ретранслятор. Общая протяженность РРЛ может достигать тысяч километров.
До недавнего времени РРЛ использовали диапазоны частот от 2 до 8 ГГц и представляли собой монументальные дорогостоящие структуры. Применялись сложные и дорогие антенные опоры: мачты или башни. Громоздкая аппаратура располагалась на станциях в специальных зданиях с собственной электростанцией и жилыми помещениями для обслуживающего персонала. Такие структуры существуют и строятся в настоящее время при организации магистральных систем связи. В 1993 г. введена в строй магистральная цифровая РРЛ Санкт-Петербург - Москва, а в 1997 г. - Москва - Хабаровск. Запланировано строительство еще нескольких магистральных систем.
Однако, в последние годы, новейшие технологии и освоение диапазонов частот выше 10 ГГц, коренным образом изменили структуры и оборудование радиорелейных линий связи. Габариты и вес оборудования уменьшились в десятки и сотни раз. В типовом исполнении современная радиорелейная аппаратура состоит из наружного и внутреннего модулей, соединенных кабелем. Наружный модуль выполняется в виде моноблока весом в несколько килограмм, состоящего из приемопередатчиков и антенны. Пример конструкций наружных блоков современной отечественной аппаратуры показан на рисунке слева (аппаратура Бист и Sandra), а на рисунке справа - наружный блок зарубежной аппаратуры MINI-LINK, которая достаточно широко распространена в России.
Наружный блок устанавливается на простой антенной опоре или на здании, дымовой трубе и прочих возвышенных местах. Внутренний модуль располагается в помещении, удаленном от наружного модуля на расстояние до 300 - 400 м и представляет собой настольную или настенную компактную конструкцию. Подобные устройства получают массовое распространение в мире и позволяют организовывать радиорелейные линии и сети связи, передавая информацию:
- между населенными пунктами,
- внутри населенных пунктов, между отдельными предприятиями или зданиями,
- между базовыми станциями сотовой связи,
- между компьютерными центрами.
Кроме того, подобные устройства могут применяться для:
- обеспечения телекоммуникационными каналами индивидуальных пользователей,
- оперативной организации связи при различных стихийных бедствиях и катастрофах,
- организации вставок в действующие и строящиеся телекоммуникации.
Современное оборудование обладает очень высокой надежностью. На аппаратуру ведущих фирм дается время наработки на отказ до 25-30 лет.
Условия распространения сигнала на интервалах РРЛ значительно отличаются от условий свободного пространства. Во-первых, электромагнитные волны могут отражаться от поверхности Земли и приходить вместе с прямой волной на вход приемника. Во-вторых, на вход приемника может приходить волна, отраженная от неоднородностей атмосферы. Взаимодействие прямой и отраженных волн приводит к изменениям уровня сигнала в приемной антенне, другими словами - к замираниям. Это обстоятельство усугубляется тем, что радиоволны распространяются по кривым траекториям, зависящим от состояния атмосферы (времени года, времени суток, погоды и пр.). Следовательно, замирания на трассе РРЛ являются случайной величиной. Помимо этих явлений, на распространение сигнала в диапазонах волн выше 8-10 ГГц, сильное влияние оказывают дождь, снег, туман, смог. Несмотря на эти дестабилизирующие факторы современные технологические решения позволяют обеспечивать надежную и эффективную связь по интервалам РРЛ.
В труднодоступных местах и для специальных целей находят применение тропосферные радиорелейные линии (ТРЛ), которые работают на расстояниях значительно превышающих прямую видимость. Передача сигнала идет за счет рассеяния электромагнитной энергии в тропосфере. Вследствиe того, что уровни рассеяных сигналов очень малы, мощности передающих устройств в ТРЛ составляют до 10 киловатт, применяются громоздкие антенны с размерами до 30х30 м и сложные малошумящие приемники. Протяженность одного интервала может быть 200 - 400 км.
Радиорелейные каналы связи получили широкое распространение во всем мире. По сравнению с традиционными наземными медными или оптоволоконными линиями они имеют следующие преимущества:
- сравнительная дешевизна высокоскоростного канала связи,
- отсутствие работ, связанных с прокладкой наземных линий связи,
- нечувствительность к сложным для прохождения участкам трассы (магистральные трассы, путипроводы, реки, болота, леса и т.п.),
- централизованное обслуживание и ремонтопригодность.
К недостаткам можно отнести:
- ограниченную дальность одного сегмента, не превышающую 100 км не только из-за энергетики, но и из-за влияния кривизны земли на обеспечение прямой видимости (исключение - ТРЛ),
- зависимость качества связи от времени года и времени суток
Таким образом, имеется вполне определенная ниша, в которой недостатки использования радиорелейных каналов связи приктически отсутствуют. Это создание или реинжениринг магистральной высокоскоростной цифровой связи в индустриальныно развитых районах, пригородах крупных городов, между мегаполисами и их городами-спутниками.
Для беспроводной связи «точка-точка», необходимо сделать выбор: радио или лазерная связь. Радиосвязь заведомо не годится в следующих случаях:
- неблагоприятная электромагнитная обстановка на объектах;
- наличие проблем с лицензированием радиочастоты;
- несоответствие требований секретности возможностям методов радиосвязи.
Перечисленные ситуации встречаются часто, и в большинстве подобных случаев применение средств инфракрасной технологии могло бы решить указанные проблемы.
Перспективность применения средств инфракрасной технологии для информационного обмена определяется прежде всего такими свойствами как:
- практически абсолютная помехозащищенность и помехоустойчивость от электромагнитных помех искусственного и естественного происхождения;
- высокая скорость передачи (до 500 Мбит/с) и независимость затухания от ее величины;
- высокая скрытность самого факта информационного обмена и, как следствие, отсутствием практических возможностей несанкционированного доступа в канал;
- возможность работы в агрессивных, зараженных, огнеопасных или взрывоопасных средах;
- возможность установления связи в местах, где прокладка кабеля невозможна или запрещена;
- отсутствие необходимости получения разрешения на установку и эксплуатацию таких линий (мощность излучения передатчика не превышает 50 мВт), хотя оборудование беспроводной оптической связи, как и любое оборудование связи, должны иметь сертификат Министерства связи РФ.
В каких же случаях инфракрасная технология связи оказывается незаменимой?
Прежде всего, технологию лазерной связи имеет смысл применять там, где нет возможности осуществить проводное соединение — в тех случаях, когда прокладка кабеля вызывает большие трудности или неоправданные финансовые или временные затраты. Например, между точками связи находится водная преграда или проходит крупная автострада. Кроме того, финансовые затраты на прокладку кабеля, как правило, превышают затраты на создание лазерного канала связи.
Другой причиной для использования средств инфракрасной технологии может быть непостоянное положение точек связи. Например, одна или обе точки связи находятся в арендуемых помещениях. В таком случае, при смене места аренды достаточно демонтировать оборудование и установить его на новом месте.
Еще одна область применения лазерной связи - создание резервных каналов на случай выхода из строя основных кабельных коммуникаций.
И, наконец, последнее: возможна установка врeменного лазерного канала связи за счет аренды оборудования на период проведения работ по прокладке кабельного соединения.
Конструктивно линия связи инфракрасного диапазона представляет собой два одинаковых блока, находящихся в климатических защитных кожухах для установки вне помещений. Каждый блок имеет разъемы для непосредственного подключения к кабельной сети здания через стандартные интерфейсы, к которым относятся: V.35, G.703, Ethernet (Half и Full Duplex), ATM-155; кроме того, существуют модели с интерфейсом в виде оптоволоконного разъема, которые поддерживают такие протоколы, как Fast Ethernet, E1, E3, FDDI, ATM. В каждом блоке находится приемник и передатчик. Передатчик представляет собой излучатель на основе импульсного полупроводникового лазерного диода (иногда обычного светодиода). Приемник в большинстве случаев имеет в своей основе скоростной pin-фотодиод или лавинный фотодиод.
И приемник, и передатчик снабжены мощными объективами, благодаря чему луч обладает малым углом расходимости. Передаваемая информация кодируется короткими импульсами излучения. Лазерные приемопередатчики осуществляют двустороннюю связь, то есть два параллельных луча распространяются в противоположных направлениях от передатчиков к приемникам.
Обязательным условием применения ЛАЛС является наличие прямой геометрической видимости между абонентами, для обеспечения которой приемо-передающие блоки устанавливаются вне помещений, например, на крышах зданий, балконах последних этажей и т.п. Лазерные линии обычно рассчитаны на функционирование при температуре окружающей среды от –60 до +50°С.
Устанавливаются блоки ЛАЛС таким образом, чтобы оптические оси приемопередатчиков совпадали. Сложность монтажных работ по установке и настройке ЛАЛС зависит от конкретной модели устанавливаемой линии. В целом, время затрачиваемое на установку и настройку ЛАЛС варьируется от 30 минут до нескольких часов, что не скажешь о временных затратах на прокладку проводных, в том числе и волоконно-оптических линий связи, тем более если речь идет о расстояниях в несколько километров.
После установки приемо-передающих блоков их необходимо подключить к существующим кабельным сетям в обоих зданиях. Производители ЛАЛС придерживаются следующей общей идеологии подключения: линия лазерной связи представляет собой эмуляцию отрезка кабеля (две витые пары или две жилы оптического кабеля), т.е. для всех устройств, участвующих в кабельной сети связываемых зданий, эта линия «не видна», не накладывает никаких ограничений на оборудование, не вносит никаких дополнительных протоколов связи или изменений и дополнений к протоколам связи.
Важнейшим свойством ЛАЛС является высокая степень защиты канала от несанкционированного доступа. Защищенность канала является следствием самой природы ЛАЛС, а не обеспечивается какими-либо специальными методами. Осуществить перехват канала технически весьма трудно в силу острой направленности луча и уникального для каждой модели метода кодирования информации импульсами излучения. По оценкам специалистов, вероятность перехвата информации составляет порядка 10–8.
Одним из основных факторов, определяющих возможность применения ЛАЛС, является устойчивость связи при воздействии помех различного происхождения как естественного, так и искусственного, в частности, снега, тумана, дыма и других явлений, снижающих прозрачность атмосферы.
Характеристикой воздействия атмосферы на связь можно считать средний процент нерабочего времени, то есть период, в течение которого связь отсутствовала. Анализ типовых условий применения ЛАЛС в городских условий показал, что дальность связи, в основном, лежит в диапазоне от 1…2 до 4…5 км. При таких дальностях связи можно ожидать уменьшение времени неблагоприятных для связи погодных условий до 0,01…-0,001 % от общего времени работы. Для линии, рассчитанной на дальность связи 10 км и при длине волны излучателя 820 нм, на расстоянии до 3 км влияние естественных помех практически не ощущается, то есть линия функционирует при любых погодных условиях. С увеличением расстояния возрастают помехи, и на дальности 10 км неблагоприятные для связи условия наблюдаются в течение срока, длительность которого составляет 1,5…2 % от общего времени работы за год. Причем снегопад является виновником отсутствия связи в половине всех случаев, на долю тумана приходится 30 % и дыма – 20 %. Необходимо отметить, что не во всех случаях неблагоприятных для связи условий происходит полная потеря связи, в ряде случаев наблюдается уменьшение скорости информационного обмена за счет повторной передачи информации.
Особо следует отметить тот факт, что дождь не оказывает серьезных помех для связи в инфракрасном диапазоне, тогда как для радиорелейных линий, работающих на высоких частотах (десятки ГГц), дождь является вредным фактором.
В настоящее время можно смело сказать, что для задачи организации связи между объектами существует решение в виде ЛАЛС. Судите сами. Основными параметрами, которые нужно учесть при организации связи, являются дальность, используемый интерфейс (то есть скорость связи, протокол, тип кабельного соединения и пр.) и, главное, цена. ЛАЛС зарубежных производителей находятся в той же ценовой нише, что и радиорелейные линии, то есть в зависимости от технических характеристик их стоимость в большинстве случаев лежит в пределах от 10 до 20 тыс. долларов. Что касается цен на ЛАЛС отечественного производства, то они заметно ниже. Следует отметить, что стоимость оборудования ЛАЛС значительно возрастает при увеличении дальности связи.
Проведенный анализ позволил получить сравнительную характеристику родов связи (см. табл.1).
На сегодняшний день производится целый ряд моделей ЛАЛС. К наиболее известным зарубежным компаниям, выпускающих лазерные линии связи, относятся: Canon Inc, Laser Communications Inc, Jolt Communications Ltd, Freebird Communications Ltd, Modular Technology PLC, A.T. Schindler Communications. Среди отечественных разработчиков следует отметить Воронежский НИИ связи, НИИ ПП, Государственное предприятие «Полюс» и Государственный Рязанский приборный завод.
Наиболее интересной ЛАЛС в плане практической реализации уникальных технологий и, соответственно, наиболее дорогой является Canobeam II — продукт известной во многих других областях фирмы Canon. Canobeam II поддерживает связь со скоростью 155 Мбит/с (АТМ или 4 канала видео) при дальности до 4 км. Угол расходимости луча передатчика сделан очень узким — порядка 4 угловых минут, за счет чего средняя мощность излучения не превышает 10 мВт при дальности связи до 4 км. При таком узком угле луча связь не может быть устойчивой из-за ветра и суточных смещений зданий. Эта проблема решена путем отслеживания направления на следующий приемо-передающий блок и автоматической корректировки оптической оси излучения. Корректировка осуществляется путем смещения специальных зеркал внутри блока. Другой важной особенностью Canobeam является специальное расширение лазерного луча непосредственно в передатчике, вследствие чего выходящий луч имеет пониженную мощность на единицу площади в непосредственной близости от передатчика и удовлетворяет стандарту безопасности IEC 825. Разумеется, все уникальные черты этой ЛАЛС отразились на ее цене, которая составляет 110 тыс. долларов.
К сожалению, большинство зарубежных моделей ЛАЛС имеют диапазон рабочих температур от –30 до +50°С, что делает их неприемлемыми для многих районов нашей страны. Распространенной задачей беспроводного соединения с помощью ЛАЛС в России является связь между полевыми точками в районах Севера, где вечная мерзлота препятствует прокладке кабеля, северные сияния создают помехи для радиосвязи, а температура зимой нередко опускается до –60°С. Некоторые производители, например, Laser Communications, предлагают помещать приемо-передающие блоков в специальный саркофаг. Разумеется, это вызывает дополнительные финансовые затраты.
Спектр оборудования российских производителей также достаточно
широк (см. табл.2). Приемлемый перечень поддерживаемых интерфейсов, конкурентоспособные цены и способность работать в более жестких климатических условиях позволяют успешно применять отечественные лазерные линии.
Дальность связи большинства отечественных моделей ЛАЛС лежит в пределах от 200 м до 10 км. Они способны передавать данные с максимальной скоростью 34,368 Мбит/с. Тем не менее прогресс не стоит на месте. В числе недавно запущенных в производство новинок можно отметить линию связи на 155 Мбит/с, разработанную Государственным Рязанским приборным заводом. Дальность этой ЛАЛС выше, нежели у большинства зарубежных моделей, и составляет 5 км. Диапазон рабочих температур — от -60 до +50°С — не обеспечивается ни одной зарубежной ЛАЛС. Для монтажа и настройки эти линии снабжены юстировочной платформой и оптическим прицелом.
Лазерные линии Л90, Л0115 и ЛСПА-2Б обеспечивают полную дуплексную связь, ориентированы на организацию обмена между двумя ЭВМ по последовательному порту (RS232). В блоке Л0115 имеется некоторый запас по скорости передачи, что позволяет одновременно с информационным обменом организовать при необходимости и обмен внутренними сигналами управления. Например, обмен информацией о величине принимаемого сигнала в каждой из двух точек позволяет оптимизировать режим работы излучателя по мощности, и как следствие, увеличить время эффективной работы лазера. Лазерная линия связи рассчитана на функционирование при температуре окружающей среды от -40 до +50°С. Блоки не имеют внешних выключателей питания и функционируют круглосуточно после подключения к обычной городской или промышленной сети 220 В 50 Гц. Максимальное потребление не превышает 25…60 Вт.
ЛАЛС типа АОЛТ, разработанные НИИ ПП (Москва), предназначены для приема/передачи цифровых потоков между центральными и периферийными узлами в составе системы сотовой связи с вероятностью ошибки передачи на бит информации не хуже 10-6 при средней мощностью излучения передатчика не более 15…30 мВт. При этом предусмотрена возможность увеличения скорости передачи и дальности высокоскоростных систем до 10 км. ЛАЛС типа АОЛПИ предназначены для приема/передачи цифровых потоков в локальных сетях через атмосферу.
Как видно из сказанного выше, ЛАЛС не являются панацеей от всех бед. Они, конечно, имеют свои недостатки, однако есть случаи, когда ЛАЛС может оказаться наиболее удобным и экономически выгодным решением.
Вопрос №12 Программные средства ЛВС. Сетевые операционные системы
Сетевые операционные системы
Структура сетевой операционной системы
Сетевая операционная система составляет основу любой вычислительной сети. Каждый компьютер в сети в значительной степени автономен, поэтому под сетевой операционной системой в широком смысле понимается совокупность операционных систем отдельных компьютеров, взаимодействующих с целью обмена сообщениями и разделения ресурсов по единым правилам - протоколам. В узком смысле сетевая ОС - это операционная система отдельного компьютера, обеспечивающая ему возможность работать в сети.
Рис. 1.1. Структура сетевой ОС
В сетевой операционной системе отдельной машины можно выделить несколько частей (рисунок 1.1):
- Средства управления локальными ресурсами компьютера: функции распределения оперативной памяти между процессами, планирования и диспетчеризации процессов, управления процессорами в мультипроцессорных машинах, управления периферийными устройствами и другие функции управления ресурсами локальных ОС.
- Средства предоставления собственных ресурсов и услуг в общее пользование - серверная часть ОС (сервер). Эти средства обеспечивают, например, блокировку файлов и записей, что необходимо для их совместного использования; ведение справочников имен сетевых ресурсов; обработку запросов удаленного доступа к собственной файловой системе и базе данных; управление очередями запросов удаленных пользователей к своим периферийным устройствам.
- Средства запроса доступа к удаленным ресурсам и услугам и их использования - клиентская часть ОС (редиректор). Эта часть выполняет распознавание и перенаправление в сеть запросов к удаленным ресурсам от приложений и пользователей, при этом запрос поступает от приложения в локальной форме, а передается в сеть в другой форме, соответствующей требованиям сервера. Клиентская часть также осуществляет прием ответов от серверов и преобразование их в локальный формат, так что для приложения выполнение локальных и удаленных запросов неразличимо.
- Коммуникационные средства ОС, с помощью которых происходит обмен сообщениями в сети. Эта часть обеспечивает адресацию и буферизацию сообщений, выбор маршрута передачи сообщения по сети, надежность передачи и т.п., то есть является средством транспортировки сообщений.
В зависимости от функций, возлагаемых на конкретный компьютер, в его операционной системе может отсутствовать либо клиентская, либо серверная части.
На рисунке 1.2 показано взаимодействие сетевых компонентов. Здесь компьютер 1 выполняет роль "чистого" клиента, а компьютер 2 - роль "чистого" сервера, соответственно на первой машине отсутствует серверная часть, а на второй - клиентская. На рисунке отдельно показан компонент клиентской части - редиректор. Именно редиректор перехватывает все запросы, поступающие от приложений, и анализирует их. Если выдан запрос к ресурсу данного компьютера, то он переадресовывается соответствующей подсистеме локальной ОС, если же это запрос к удаленному ресурсу, то он переправляется в сеть. При этом клиентская часть преобразует запрос из локальной формы в сетевой формат и передает его транспортной подсистеме, которая отвечает за доставку сообщений указанному серверу. Серверная часть операционной системы компьютера 2 принимает запрос, преобразует его и передает для выполнения своей локальной ОС. После того, как результат получен, сервер обращается к транспортной подсистеме и направляет ответ клиенту, выдавшему запрос. Клиентская часть преобразует результат в соответствующий формат и адресует его тому приложению, которое выдало запрос.
Рис. 1.2. взаимодействие компонентов операционной системы при взаимодействии компьютеров
На практике сложилось несколько подходов к построению сетевых операционных систем (рисунок 1.3).
Рис. 1.3. Варианты построения сетевых ОС
Первые сетевые ОС представляли собой совокупность существующей локальной ОС и надстроенной над ней сетевой оболочки. При этом в локальную ОС встраивался минимум сетевых функций, необходимых для работы сетевой оболочки, которая выполняла основные сетевые функции. Примером такого подхода является использование на каждой машине сети операционной системы MS DOS (у которой начиная с ее третьей версии появились такие встроенные функции, как блокировка файлов и записей, необходимые для совместного доступа к файлам). Принцип построения сетевых ОС в виде сетевой оболочки над локальной ОС используется и в современных ОС, таких, например, как LANtastic или Personal Ware.
Однако более эффективным представляется путь разработки операционных систем, изначально предназначенных для работы в сети. Сетевые функции у ОС такого типа глубоко встроены в основные модули системы, что обеспечивает их логическую стройность, простоту эксплуатации и модификации, а также высокую производительность. Примером такой ОС является система Windows NT фирмы Microsoft, которая за счет встроенности сетевых средств обеспечивает более высокие показатели производительности и защищенности информации по сравнению с сетевой ОС LAN Manager той же фирмы (совместная разработка с IBM), являющейся надстройкой над локальной операционной системой OS/2.
Одноранговые сетевые ОС и ОС с выделенными серверами
В зависимости от того, как распределены функции между компьютерами сети, сетевые операционные системы, а следовательно, и сети делятся на два класса: одноранговые и двухранговые (рисунок 1.4). Последние чаще называют сетями с выделенными серверами.
(а)
(б)
Рис. 1.4. (а) - Одноранговая сеть, (б) - Двухранговая сеть
Если компьютер предоставляет свои ресурсы другим пользователям сети, то он играет роль сервера. При этом компьютер, обращающийся к ресурсам другой машины, является клиентом. Как уже было сказано, компьютер, работающий в сети, может выполнять функции либо клиента, либо сервера, либо совмещать обе эти функции.
Если выполнение каких-либо серверных функций является основным назначением компьютера (например, предоставление файлов в общее пользование всем остальным пользователям сети или организация совместного использования факса, или предоставление всем пользователям сети возможности запуска на данном компьютере своих приложений), то такой компьютер называется выделенным сервером. В зависимости от того, какой ресурс сервера является разделяемым, он называется файл-сервером, факс-сервером, принт-сервером, сервером приложений и т.д.
Очевидно, что на выделенных серверах желательно устанавливать ОС, специально оптимизированные для выполнения тех или иных серверных функций. Поэтому в сетях с выделенными серверами чаще всего используются сетевые операционные системы, в состав которых входит нескольких вариантов ОС, отличающихся возможностями серверных частей. Например, сетевая ОС Novell NetWare имеет серверный вариант, оптимизированный для работы в качестве файл-сервера, а также варианты оболочек для рабочих станций с различными локальными ОС, причем эти оболочки выполняют исключительно функции клиента. Другим примером ОС, ориентированной на построение сети с выделенным сервером, является операционная система Windows NT. В отличие от NetWare, оба варианта данной сетевой ОС - Windows NT Server (для выделенного сервера) и Windows NT Workstation (для рабочей станции) - могут поддерживать функции и клиента и сервера. Но серверный вариант Windows NT имеет больше возможностей для предоставления ресурсов своего компьютера другим пользователям сети, так как может выполнять более широкий набор функций, поддерживает большее количество одновременных соединений с клиентами, реализует централизованное управление сетью, имеет более развитые средства защиты.
Выделенный сервер не принято использовать в качестве компьютера для выполнения текущих задач, не связанных с его основным назначением, так как это может уменьшить производительность его работы как сервера. В связи с такими соображениями в ОС Novell NetWare на серверной части возможность выполнения обычных прикладных программ вообще не предусмотрена, то есть сервер не содержит клиентской части, а на рабочих станциях отсутствуют серверные компоненты. Однако в других сетевых ОС функционирование на выделенном сервере клиентской части вполне возможно. Например, под управлением Windows NT Server могут запускаться обычные программы локального пользователя, которые могут потребовать выполнения клиентских функций ОС при появлении запросов к ресурсам других компьютеров сети. При этом рабочие станции, на которых установлена ОС Windows NT Workstation, могут выполнять функции невыделенного сервера.
Важно понять, что несмотря на то, что в сети с выделенным сервером все компьютеры в общем случае могут выполнять одновременно роли и сервера, и клиента, эта сеть функционально не симметрична: аппаратно и программно в ней реализованы два типа компьютеров - одни, в большей степени ориентированные на выполнение серверных функций и работающие под управлением специализированных серверных ОС, а другие - в основном выполняющие клиентские функции и работающие под управлением соответствующего этому назначению варианта ОС. Функциональная несимметричность, как правило, вызывает и несимметричность аппаратуры - для выделенных серверов используются более мощные компьютеры с большими объемами оперативной и внешней памяти. Таким образом, функциональная несимметричность в сетях с выделенным сервером сопровождается несимметричностью операционных систем (специализация ОС) и аппаратной несимметричностью (специализация компьютеров).
В одноранговых сетях все компьютеры равны в правах доступа к ресурсам друг друга. Каждый пользователь может по своему желанию объявить какой-либо ресурс своего компьютера разделяемым, после чего другие пользователи могут его эксплуатировать. В таких сетях на всех компьютерах устанавливается одна и та же ОС, которая предоставляет всем компьютерам в сети потенциально равные возможности. Одноранговые сети могут быть построены, например, на базе ОС LANtastic, Personal Ware, Windows for Workgroup, Windows NT Workstation.
В одноранговых сетях также может возникнуть функциональная несимметричность: одни пользователи не желают разделять свои ресурсы с другими, и в таком случае их компьютеры выполняют роль клиента, за другими компьютерами администратор закрепил только функции по организации совместного использования ресурсов, а значит они являются серверами, в третьем случае, когда локальный пользователь не возражает против использования его ресурсов и сам не исключает возможности обращения к другим компьютерам, ОС, устанавливаемая на его компьютере, должна включать и серверную, и клиентскую части. В отличие от сетей с выделенными серверами, в одноранговых сетях отсутствует специализация ОС в зависимости от преобладающей функциональной направленности - клиента или сервера. Все вариации реализуются средствами конфигурирования одного и того же варианта ОС.
Одноранговые сети проще в организации и эксплуатации, однако они применяются в основном для объединения небольших групп пользователей, не предъявляющих больших требований к объемам хранимой информации, ее защищенности от несанкционированного доступа и к скорости доступа. При повышенных требованиях к этим характеристикам более подходящими являются двухранговые сети, где сервер лучше решает задачу обслуживания пользователей своими ресурсами, так как его аппаратура и сетевая операционная система специально спроектированы для этой цели.
ОС для рабочих групп и ОС для сетей масштаба предприятия
Сетевые операционные системы имеют разные свойства в зависимости от того, предназначены они для сетей масштаба рабочей группы (отдела), для сетей масштаба кампуса или для сетей масштаба предприятия.
- Сети отделов - используются небольшой группой сотрудников, решающих общие задачи. Главной целью сети отдела является разделение локальных ресурсов, таких как приложения, данные, лазерные принтеры и модемы. Сети отделов обычно не разделяются на подсети.
- Сети кампусов - соединяют несколько сетей отделов внутри отдельного здания или внутри одной территории предприятия. Эти сети являются все еще локальными сетями, хотя и могут покрывать территорию в несколько квадратных километров. Сервисы такой сети включают взаимодействие между сетями отделов, доступ к базам данных предприятия, доступ к факс-серверам, высокоскоростным модемам и высокоскоростным принтерам.
- Сети предприятия (корпоративные сети) - объединяют все компьютеры всех территорий отдельного предприятия. Они могут покрывать город, регион или даже континент. В таких сетях пользователям предоставляется доступ к информации и приложениям, находящимся в других рабочих группах, других отделах, подразделениях и штаб-квартирах корпорации.
Главной задачей операционной системы, используемой в сети масштаба отдела, является организация разделения ресурсов, таких как приложения, данные, лазерные принтеры и, возможно, низкоскоростные модемы. Обычно сети отделов имеют один или два файловых сервера и не более чем 30 пользователей. Задачи управления на уровне отдела относительно просты. В задачи администратора входит добавление новых пользователей, устранение простых отказов, инсталляция новых узлов и установка новых версий программного обеспечения. Операционные системы сетей отделов хорошо отработаны и разнообразны, также, как и сами сети отделов, уже давно применяющиеся и достаточно отлаженные. Такая сеть обычно использует одну или максимум две сетевые ОС. Чаще всего это сеть с выделенным сервером NetWare 3.x или Windows NT, или же одноранговая сеть, например сеть Windows for Workgroups.
Пользователи и администраторы сетей отделов вскоре осознают, что они могут улучшить эффективность своей работы путем получения доступа к информации других отделов своего предприятия. Если сотрудник, занимающийся продажами, может получить доступ к характеристикам конкретного продукта и включить их в презентацию, то эта информация будет более свежей и будет оказывать большее влияние на покупателей. Если отдел маркетинга может получить доступ к характеристикам продукта, который еще только разрабатывается инженерным отделом, то он может быстро подготовить маркетинговые материалы сразу же после окончания разработки.
Итак, следующим шагом в эволюции сетей является объединение локальных сетей нескольких отделов в единую сеть здания или группы зданий. Такие сети называют сетями кампусов. Сети кампусов могут простираться на несколько километров, но при этом глобальные соединения не требуются.
Операционная система, работающая в сети кампуса, должна обеспечивать для сотрудников одних отделов доступ к некоторым файлам и ресурсам сетей других отделов. Услуги, предоставляемые ОС сетей кампусов, не ограничиваются простым разделением файлов и принтеров, а часто предоставляют доступ и к серверам других типов, например, к факс-серверам и к серверам высокоскоростных модемов. Важным сервисом, предоставляемым операционными системами данного класса, является доступ к корпоративным базам данных, независимо от того, располагаются ли они на серверах баз данных или на миникомпьютерах.
Именно на уровне сети кампуса начинаются проблемы интеграции. В общем случае, отделы уже выбрали для себя типы компьютеров, сетевого оборудования и сетевых операционных систем. Например, инженерный отдел может использовать операционную систему UNIX и сетевое оборудование Ethernet, отдел продаж может использовать операционные среды DOS/Novell и оборудование Token Ring. Очень часто сеть кампуса соединяет разнородные компьютерные системы, в то время как сети отделов используют однотипные компьютеры.
Корпоративная сеть соединяет сети всех подразделений предприятия, в общем случае находящихся на значительных расстояниях. Корпоративные сети используют глобальные связи (WAN links) для соединения локальных сетей или отдельных компьютеров.
Пользователям корпоративных сетей требуются все те приложения и услуги, которые имеются в сетях отделов и кампусов, плюс некоторые дополнительные приложения и услуги, например, доступ к приложениям мейнфреймов и миникомпьютеров и к глобальным связям. Когда ОС разрабатывается для локальной сети или рабочей группы, то ее главной обязанностью является разделение файлов и других сетевых ресурсов (обычно принтеров) между локально подключенными пользователями. Такой подход не применим для уровня предприятия. Наряду с базовыми сервисами, связанными с разделением файлов и принтеров, сетевая ОС, которая разрабатывается для корпораций, должна поддерживать более широкий набор сервисов, в который обычно входят почтовая служба, средства коллективной работы, поддержка удаленных пользователей, факс-сервис, обработка голосовых сообщений, организация видеоконференций и др.
Кроме того, многие существующие методы и подходы к решению традиционных задач сетей меньших масштабов для корпоративной сети оказались непригодными. На первый план вышли такие задачи и проблемы, которые в сетях рабочих групп, отделов и даже кампусов либо имели второстепенное значение, либо вообще не проявлялись. Например, простейшая для небольшой сети задача ведения учетной информации о пользователях выросла в сложную проблему для сети масштаба предприятия. А использование глобальных связей требует от корпоративных ОС поддержки протоколов, хорошо работающих на низкоскоростных линиях, и отказа от некоторых традиционно используемых протоколов (например, тех, которые активно используют широковещательные сообщения). Особое значение приобрели задачи преодоления гетерогенности - в сети появились многочисленные шлюзы, обеспечивающие согласованную работу различных ОС и сетевых системных приложений.
К признакам корпоративных ОС могут быть отнесены также следующие особенности.
Поддержка приложений. В корпоративных сетях выполняются сложные приложения, требующие для выполнения большой вычислительной мощности. Такие приложения разделяются на несколько частей, например, на одном компьютере выполняется часть приложения, связанная с выполнением запросов к базе данных, на другом - запросов к файловому сервису, а на клиентских машинах - часть, реализующая логику обработки данных приложения и организующая интерфейс с пользователем. Вычислительная часть общих для корпорации программных систем может быть слишком объемной и неподъемной для рабочих станций клиентов, поэтому приложения будут выполняться более эффективно, если их наиболее сложные в вычислительном отношении части перенести на специально предназначенный для этого мощный компьютер - сервер приложений.
Сервер приложений должен базироваться на мощной аппаратной платформе (мультипроцессорные системы, часто на базе RISC-процессоров, специализированные кластерные архитектуры). ОС сервера приложений должна обеспечивать высокую производительность вычислений, а значит поддерживать многонитевую обработку, вытесняющую многозадачность, мультипроцессирование, виртуальную память и наиболее популярные прикладные среды (UNIX, Windows, MS-DOS, OS/2). В этом отношении сетевую ОС NetWare трудно отнести к корпоративным продуктам, так как в ней отсутствуют почти все требования, предъявляемые к серверу приложений. В то же время хорошая поддержка универсальных приложений в Windows NT собственно и позволяет ей претендовать на место в мире корпоративных продуктов.
Справочная служба. Корпоративная ОС должна обладать способностью хранить информацию обо всех пользователях и ресурсах таким образом, чтобы обеспечивалось управление ею из одной центральной точки. Подобно большой организации, корпоративная сеть нуждается в централизованном хранении как можно более полной справочной информации о самой себе (начиная с данных о пользователях, серверах, рабочих станциях и кончая данными о кабельной системе). Естественно организовать эту информацию в виде базы данных. Данные из этой базы могут быть востребованы многими сетевыми системными приложениями, в первую очередь системами управления и администрирования. Кроме этого, такая база полезна при организации электронной почты, систем коллективной работы, службы безопасности, службы инвентаризации программного и аппаратного обеспечения сети, да и для практически любого крупного бизнес-приложения.
База данных, хранящая справочную информацию, предоставляет все то же многообразие возможностей и порождает все то же множество проблем, что и любая другая крупная база данных. Она позволяет осуществлять различные операции поиска, сортировки, модификации и т.п., что очень сильно облегчает жизнь как администраторам, так и пользователям. Но за эти удобства приходится расплачиваться решением проблем распределенности, репликации и синхронизации.
В идеале сетевая справочная информация должна быть реализована в виде единой базы данных, а не представлять собой набор баз данных, специализирующихся на хранении информации того или иного вида, как это часто бывает в реальных операционных системах. Например, в Windows NT имеется по крайней мере пять различных типов справочных баз данных. Главный справочник домена (NT Domain Directory Service) хранит информацию о пользователях, которая используется при организации их логического входа в сеть. Данные о тех же пользователях могут содержаться и в другом справочнике, используемом электронной почтой Microsoft Mail. Еще три базы данных поддерживают разрешение низкоуровневых адресов: WINS - устанавливает соответствие Netbios-имен IP-адресам, справочник DNS - сервер имен домена - оказывается полезным при подключении NT-сети к Internet, и наконец, справочник протокола DHCP используется для автоматического назначения IP-адресов компьютерам сети. Ближе к идеалу находятся справочные службы, поставляемые фирмой Banyan (продукт Streettalk III) и фирмой Novell (NetWare Directory Services), предлагающие единый справочник для всех сетевых приложений. Наличие единой справочной службы для сетевой операционной системы - один из важнейших признаков ее корпоративности.
Безопасность. Особую важность для ОС корпоративной сети приобретают вопросы безопасности данных. С одной стороны, в крупномасштабной сети объективно существует больше возможностей для несанкционированного доступа - из-за децентрализации данных и большой распределенности "законных" точек доступа, из-за большого числа пользователей, благонадежность которых трудно установить, а также из-за большого числа возможных точек несанкционированного подключения к сети. С другой стороны, корпоративные бизнес-приложения работают с данными, которые имеют жизненно важное значение для успешной работы корпорации в целом. И для защиты таких данных в корпоративных сетях наряду с различными аппаратными средствами используется весь спектр средств защиты, предоставляемый операционной системой: избирательные или мандатные права доступа, сложные процедуры аутентификации пользователей, программная шифрация.