Джеймс трефил
Вид материала | Закон |
СодержаниеСтандартная модель Стволовые клетки Суточные ритмы Газопылевого облака Альфред лотар бегенер Темная материя |
- Джеймс А. Дискретная математика и комбинаторика [Текст] / Джеймс А. Андерсон, 42.79kb.
- Джеймс блиш города в полете 1-4 триумф времени вернись домой, землянин жизнь ради звезд, 10495.38kb.
- Джеймс Н. Фрей. Как написать гениальный роман, 2872.12kb.
- Мюриел Джеймс, Дороти Джонгвард, 4810.7kb.
- Кен Арнольд Джеймс Гослинг, 5058.04kb.
- Джеймс Джодж Бойл. Секты-убийцы (Главы из книги) Перевод с английского Н. Усовой, 844.92kb.
- Джеймс Хэрриот, 3697.74kb.
- В. К. Мершавки Доктор Джеймс Холлис известный юнгианский аналитик, директор Центра, 1972.4kb.
- В. К. Мершавки Доктор Джеймс Холлис известный юнгианский аналитик, директор Центра, 5237.48kb.
- Джеймс Боллард, 2244.23kb.
СПЕКТРОСКОПИЯ
1890
спектр электромагнитного излучения
1900
постоянная ридберга
1900
постоянная планка
излучение
1913
черного тела
атом бора
Согласно простейшей модели строения атома бора, электроны можно представить расположенными на четко определенных («разрешенных») орбитах вокруг ядра атома. При этом они могут дискретно переходить с орбиты на орбиту, излучая или поглощая порции энергии, и это явление называется квантовым скачком. Если электрон переходит на более низкую орбиту, он теряет квант энергии и излучает квант света — фотон, который характеризуется строго определенной длиной волны, зависящей от потери энергии при квантовом скачке. Излучаемые таким образом фотоны мы воспринимаем как свечение совершенно определенного цвета — раскаленная медная проволока, например, светится синим (см. проба на окрашивание пламени). Для перехода на более высокую орбиту электрону, наоборот, требуется дополнительная энергия, и обычно он поглощает ее также в виде фотонов с определенной длиной волны (см. открытие кирхго фа—бунзена).
Такое взаимодействие между светом и атомами вещества легло в основу важной отрасли экспериментально-прикладной науки, которая называется спектроскопия, или спектральный анализ. Поскольку ядра атомов различных элементов содержат различное число протонов, электроны в этих атомах располагаются на отличающихся друг от друга разрешенных орбитах (или, если придерживаться современной, более сложной картины строения атома, — орбиталях, определяющих вероятность нахождения электрона в определенной области, а не его точное местонахождение). Это означает, что в атомах различных химических элементов энергии квантовых скачков между разрешенными орбиталями отличаются и они будут излучать свет с различными длинами волн. Так, в видимом спектре излучения натрия наблюдаются лишь две близко расположенные линии в желтой части спектра (вот почему уличные натриевые лампы дневного света можно узнать по характерному желтоватому свечению), а у ртути спектральные линии приходятся на сине-голубую область (соответственно, если лампа уличного освещения светится голубоватым светом, значит, это ртутная лампа).
Простой, казалось бы, факт, что мы можем судить об атомном составе вещества по длине волн излучаемого им света, дал начало целой отрасли экспериментальных и прикладных исследований — спектроскопии. Набор линий в спектре каждого химического элемента уникален. Далее, если атом ионизирован, этот набор спектральных линий смещается и образует новую характерную серию в спектре. Таким образом, обнаружив серию спектральных линий (или набор излучаемых частот, что, по сути, то же самое) изучаемого тела или вещества (например, при накаливании неизвестного материала неизвестного нам химического состава в пламени горелки Бунзена), мы можем с уверенностью судить о присутствии или отсутствии соответствующих химических элементов в составе исследуемого материала.
Это основа так называемой эмиссионной спектроскопии. Сравнивая интенсивность излучения спектральных линий, характерных для различных элементов, мы можем рассчитать их количественное соотношение в веществе и определить его химический состав. Благодаря этому нам даже не надо исследовать вещество в химической лаборатории и мы можем судить о химическом составе светящихся объектов, например звезд и галактик, находящихся на колоссальном удалении от них.
Сходным образом работает и абсорбционная спектроскопия. В этом случае через изучаемое вещество пропускается белый свет (представляющий из себя сплошной спектр световых частот) и выявляются линии поглощения, соответствующие частотам и длинам волн квантовых переходов электронов на более высокие орбитали. Соответственно, рассматривая спектральную картину такого света, пропущенного через вещество, мы увидим темные линии поглощения и можем судить о составе вещества. Абсорбционная спектроскопия широко применяется в астрофизике для исследования химического состава планет, туманностей, газопылевых облаков и других космических объектов, не обладающих собственным свечением, по темным линиям в спектре белых звезд-источников, находящихся за ними.
Стандартная модель
Вся материя состоит из кварков, лептонов и частиц—переносчиков взаимодействий
•
1897
1961
элементарные частицы
1961
СТАНДАРТНАЯ МОДЕЛЬ
кварки
1972
и восьмеричный путь
квантовая хромодинамика
Стандартной моделью сегодня принято называть теорию, наилучшим образом отражающую наши представления об исходном материале, из которого изначально построена Вселенная. Она же описывает, как именно материя образуется из этих базовых компонентов, и силы и механизмы взаимодействия между ними
(см. также КВАРКИ и ВОСЬМЕРИЧНЫЙ ПУТЬ, УНИВЕРСАЛЬНЫЕ ТЕОРИИ и ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.
Со структурной точки зрения элементарные частицы, из которых состоят атомные ядра (нуклоны), и вообще все тяжелые частицы — адроны (барионы и мезоны) — состоят из еще более простых частиц, которые принято называть фундаментальными. В этой роли по-настоящему фундаментальных первичных элементов материи выступают кварки, электрический заряд которых равен 2/3 или -1/3 единичного положительного заряда протона. Самые распространенные и легкие кварки называют верхним и нижним и обозначают, соответственно, u (от английского up — «верх») и d (down — «низ»). Иногда их же называют протонным и нейтронным кварком по причине того, что протон состоит из комбинации uud, а нейтрон — udd. Верхний кварк имеет заряд 2/3; нижний — отрицательный заряд -1/3. Поскольку протон состоит из двух верхних и одного нижнего, а нейтрон — из одного верхнего и двух нижних кварков, вы можете самостоятельно убедиться, что суммарный заряд протона и нейтрона получается строго равным 1 и 0, и удостовериться, что в этом стандартная модель адекватно описывает реальность. Две другие пары кварков входят в состав более экзотических частиц. Кварки из второй пары называют очарованными — c (от charmed) и странными — s (от strange). Третью пару составляют истинные — t (truth) и красивые — b (beauty) кварки. Практически все частицы, предсказываемые стандартной моделью и состоящие из различных комбинаций кварков, уже открыты экспериментально.
Другой строительный набор состоит из кирпичиков, называемых лептонами. Самый распространенный из лептонов — давно нам знакомый электрон, входящий в структуру атомов, но не участвующий в ядерных взаимодействиях, ограничиваясь межатомными. Помимо него (и парной ему античастицы под названием позитрон) к лептонам относятся более тяжелые частицы — мюон и тау-лептон с их античастицами. Кроме того, каждому лептону сопоставлена своя незаряженная частица с нулевой (или практически нулевой) массой покоя; такие частицы называются, соответственно, электронное, мюонное или таонное нейтрино.
Итак, лептоны, подобно кваркам, также образуют три «семейные пары». Такая симметрия не ускользнула от наблюдательных глаз теоретиков, однако убедительного объяснения ей до сих пор не предложено. Как бы то ни было, кварки и лептоны представляют собой основной строительный материал Вселенной.
Чтобы понять оборотную сторону медали — характер сил взаимодействия между кварками и лептонами, — нужно понять, как
современные физики-теоретики интерпретируют само понятие силы. В этом нам поможет аналогия. Представьте себе двух лодочников, гребущих на встречных курсах по реке Кем в Кембридже. Один гребец от щедрости душевной решил угостить коллегу шампанским и, когда они проплывали друг мимо друга, кинул ему полную бутылку шампанского. В результате действия закона сохранения импульса, когда первый гребец кинул бутылку, курс его лодки отклонился от прямолинейного в противоположную сторону, а когда второй гребец поймал бутылку, ее импульс передался ему, и вторая лодка также отклонилась от прямолинейного курса, но уже в противоположную сторону. Таким образом, в результате обмена шампанским обе лодки изменили направление. Согласно законам механики ньютона, это означает, что между лодками произошло силовое взаимодействие. Но ведь лодки не вступали между собой в прямое соприкосновение! Здесь мы и видим наглядно, и понимаем интуитивно, что сила взаимодействия между лодками была передана носителем импульса — бутылкой шампанского. Физики назвали бы ее переносчиком взаимодействия.
В точности так же и силовые взаимодействия между частицами происходят посредством обмена частицами — переносчиками этих взаимодействий. Фактически различие между фундаментальными силами взаимодействия между частицами мы и проводим лишь постольку, поскольку в роли переносчиков этих взаимодействий выступают разные частицы. Таких взаимодействий четыре: сильное (именно оно удерживает кварки внутри частиц), электромагнитное, слабое (именно оно приводит к некоторым формам радиоактивного распада) и гравитационное. Переносчиками сильного цветового взаимодействия являются глюоны, не обладающие ни массой, ни электрическим зарядом. Этот тип взаимодействия описывается квантовой хромодинамикой. Электромагнитное взаимодействие происходит посредством обмена квантами электромагнитного излучения, которые называются фотонами и также лишены массы. Слабое взаимодействие, напротив, передается массивными векторными или калибровочными бозонами, которые «весят» в 80-90 раз больше протона, — в лабораторных условиях их впервые удалось обнаружить лишь в начале 1980-х годов. наконец, гравитационное взаимодействие передается посредством обмена не обладающими собственной массой гравитонами — этих посредников пока что экспериментально обнаружить не удалось.
В рамках стандартной модели первые три типа фундаментальных взаимодействий удалось объединить, и они более не рассматриваются по отдельности, а считаются тремя различными проявлениями силы единой природы. Возвращаясь к аналогии, предположим, что другая пара гребцов, проплывая друг мимо друга по реке Кем, обменялась не бутылкой шампанского, а всего лишь стаканчиком мороженого. от этого лодки также отклонятся от курса в противоположные стороны, но значительно слабее. Стороннему наблюдателю может показаться, что в этих двух случаях между лодками действовали разные силы: в первом случае произошел обмен жидкостью (бутылку я предлагаю во внимание не принимать, поскольку большинству из нас интересно ее содержимое), а во втором — твердым телом (мороженым). А теперь представьте, что в Кембридже в тот день стояла редкостная для северных мест летняя жара и мороженое в полете растаяло. То есть достаточно некоторого повышения температуры, чтобы понять, что фактически взаимодействие не зависит от того, жидкое или твердое тело выступает в роли его переносчика. Единственная причина, по которой нам представлялось, что между лодками действуют различные силы, состояла во внешнем отличии переносчика-мороженого, вызванном недостаточной для его плавления температурой. Поднимите температуру — и силы взаимодействия предстанут наглядно едиными.
Силы, действующие во Вселенной, также сплавляются воедино при высоких энергиях (температурах) взаимодействия, после чего различить их невозможно. Первыми объединяются (именно так это принято называть) слабое ядерное и электромагнитное взаимодействия. В результате мы получаем так называемое электрослабое взаимодействие, наблюдаемое даже лабораторно при энергиях, развиваемых современными ускорителями элементарных частиц. В ранней вселенной энергии были столь высоки, что в первые 10-10 секунды после Большого взрыва не было грани между слабыми ядерными и электромагнитными силами. Лишь после того, как средняя температура Вселенной понизилась до 1014 K, все четыре наблюдаемые сегодня силовые взаимодействия разделились и приняли современный вид. Пока температура была выше этой отметки, действовали лишь три фундаментальные силы: сильного, объединенного электрослабого и гравитационного взаимодействий.
Объединение электрослабого и сильного ядерного взаимодействия происходит при температурах порядка 1027К. В лабораторных условиях такие энергии сегодня недостижимы. Самый мощный современный ускоритель — строящийся в настоящее время на границе Франции и Швейцарии Большой адронный коллайдер (Large Hadron Collider) — сможет разгонять частицы до энергий, которые составляют всего 0,000000001% от необходимой для объединения электрослабого и сильного ядерного взаимодействий. Так что, вероятно, экспериментального подтверждения этого объединения ждать нам придется долго. Таких энергий нет и в современной Вселенной, однако в первые 10-35 с ее существования температура Вселенной была выше 1027 К и во Вселенной действовало всего две силы — электросильного и гравитационного взаимодействия. Теории, описывающие эти процессы, называют «теориями Великого объединения» (ТВО). Напрямую проверить ТВО нельзя, но они дают определенные прогнозы и относительно процессов, протекающих при более низких энергиях. На сегодняшний день все
предсказания ТВО для относительно низких температур и энергий подтверждаются экспериментально.
Итак, стандартная модель в обобщенном виде представляет собой теорию строения Вселенной, в которой материя состоит из кварков и лептонов, а сильные, электромагнитные и слабые взаимодействия между ними описываются теориями великого объединения. Такая модель, очевидно, не полна, поскольку не включает гравитацию. Предположительно, более полная теория со временем все-таки будет разработана (см. универсальные теории), а на сегодня стандартная модель — это лучшее из того, что мы имеем.
Стволовые клетки
Некоторые клетки плода и взрослого организма сохраняют способность давать начало специализированным клеткам различного типа
1663, КЛЕТОЧНАЯ ТЕОРИЯ
1839
1953 • ДНК
1960-е • СТВОЛОВЫЕ КЛЕТКИ
1995 КЛОНИРОВАНИЕ
Человеческий организм начинает развиваться из одной клетки (см. клеточная теория) — одной оплодотворенной клетки, называемой зиготой. ДНК, содержащаяся в этой клетке, будет воспроизведена во всех клетках взрослого организма. но по мере созревания особи в клеточной ДНК происходят изменения. Вначале «включены» все гены, находящиеся внутри зиготы: генетики скажут, что все гены могут экспрессироваться — другими словами, они могут работать. однако по мере взросления особи клетки приобретают специализацию, для этого требуется выключить те или иные гены, отменив, таким образом, их экспрессию. Например, в каждой клетке вашего тела находятся гены, ответственные за выработку инсулина, однако инсулин синтезируют только клетки поджелудочной железы. В остальных клетках организма (например, клетках кожи, нервных клетках головного мозга) ген инсулина отключен.
То же самое происходит во всех клетках вашего организма — при развитии человека, которым управляют еще непознанные нами процессы, специализированные клетки возникают вследствие отключения всех за небольшим исключением генов клеточной ДНК, и специализация определяется участками ДНК, которые остались включенными. После того как «щелкнет выключатель», судьба клеток определена навечно — мышечные клетки при делении будут производить только мышечные клетки, кожные клетки — только клетки кожи и т.д. Такая особенность развития имеет грандиозные последствия для здоровья человека: мышечные клетки, погибшие при сердечном приступе, не могут быть замещены другими клетками; ничем нельзя заменить и клетки мозга, синтезирующие допамин, если они будут уничтожены болезнью Паркинсона; перерезанные клетки спинного мозга также не восстанавливаются. очень многие людские страдания вызваны неспособностью организма замещать специализированные клетки.
После того как зигота начнет делиться, формируя эмбрион, клетки некоторое время сохраняют способность развиваться в ткань любого типа. Клетки, которые могут развиться в любую клетку организма, называются эмбриональными стволовыми клетками. В конце 1990-х годов ученые научились выделять такие клетки и сколь угодно долго поддерживать их в культуре. Это достижение открывает поразительные перспективы перед человечеством, поскольку теперь мы можем создавать в лаборатории новые клетки, а возможно, и новые органы.
Ученые могут использовать технологии стволовых клеток совместно с технологиями клонирования для того, чтобы выделять ДНК из клетки взрослого организма, помещать ее в яйцеклетку человека и получать при этом эмбриональные стволовые клетки, содержащие ДНК взрослой особи. Это позволит вьгращивать органы для замены ими поврежденных, не беспокоясь об отторжении имплантированной ткани организмом-реципиентом.
Недавно обнаружено, что некоторые клетки взрослого организма, по-видимому, хотя бы отчасти обладают способностью порождать стволовые клетки, характерные для эмбриона. Если такое действительно возможно, удастся устранить одно из этических препятствий на пути к использованию эмбриональных стволовых клеток — нам не придется разрушать эмбрион человека, чтобы получить эти клетки.
Суточные ритмы
В живых организмах установлены внутренние часы
1729, • СУТОЧНЫЕ РИТМЫ
сер. XX
Х1Х-ХХ • РАСПРОСТРАНЕНИЕ НЕРВНЫХ ИМПУЛЬСОВ
1937 • ГЛИКОЛИЗ И ДЫХАНИЕ
сер. • ИММУННАЯ СИСТЕМА 1960-х
Поведение практически всего живого, от водоросли до человека, привязано к временным циклам, которые обычно соотносятся с продолжительностью дня. Например, листья многих растений раскрываются на рассвете и складываются на закате, и любому, кто совершал дальний авиаперелет, известно о феномене «смещения времени», когда человек плохо себя чувствует, резко оказавшись в другом часовом поясе. В середине XX века ученые спорили, является ли такое поведение реакцией на внешние раздражители или формируется под влиянием внутреннего механизма. Сегодня мы знаем, что оно обусловлено внутренними механизмами, получившими название «биологических часов».
исследования, которые позволят узнать, как именно работают эти биологические часы в организме человека и других животных, пока еще не закончены, но то, что такие часы существуют, уже не вызывает сомнения. В частности, эксперименты на плодовой мушке показали, что, изменяя всего один ген, можно получить мушек, лишенных внутренних часов, мушек, страдающих бессонницей, и мушек, у которых продолжительность циклов сна и бодрствования отлична от 24 часов.
Хорошо известно, что у человека упадок жизненных сил приходится на 3—4 часа утра (один поэт назвал это «кромешной полночью души»), и действительно, смерть в эти часы наступает чаще, чем в любое другое время суток. Все физиологические функции, от дыхания до сердцебиения, подчиняются этим циклам. Плохое самочувствие при перелете через несколько часовых поясов возникает из-за нарушения этих циклов, так как организм пытается синхронизировать внутренние часы со светлым временем суток на новом месте. Но время реакции, необходимое для восстановления равновесия, неодинаково для всех наших физиологических и психических функций, поэтому мы чувствуем себя неважно в течение нескольких дней, пока не будет восстановлена синхронизация.
опытные путешественники хорошо знакомы с влиянием дальних перелетов на суточные ритмы. При пересечении нескольких часовых поясов нарушается синхронизация всех суточных ритмов человека. и это нарушение биоритмов сохраняется до тех пор, пока в новом часовом поясе циклы не придут в соответствие со светлым временем суток. обычно на это требуется несколько дней. Путешественники часто берут с собой препарат мелатонин, чтобы быстрее перевести цикл сна в новый режим, поскольку мелатонин вызывает засыпание в любом цикле.
Тектоника плит
Земная поверхность состоит из нескольких сцепленных между собой больших плит, которые медленно движутся друг относительно друга
1755 • ГИПОТЕЗА
ГАЗОПЫЛЕВОГО ОБЛАКА
1788 • УНИФОРМИЗМ
1960-е • ТЕКТОНИКА ПЛИТ
1979 • ГИПОТЕЗА ГЕИ
твердые планеты в своем развитии проходят период нагревания, основную энергию для которого дают падающие на поверхность планеты обломки космических тел (см. гипотеза газопылевого облака). При столкновении этих объектов с планетой почти вся кинетическая энергия падающего объекта мгновенно преобразуется в тепловую, поскольку его скорость движения, составляющая несколько десятков километров в секунду, в момент удара резко падает до нуля. Всем внутренним планетам Солнечной системы — Меркурию, Венере, Земле, Марсу — этого тепла хватало если не для того, чтобы полностью или частично расплавиться, то хотя бы для того, чтобы размягчиться и сделаться пластичными и текучими. В этот период вещества с наибольшей плотностью передвигались к центру планет, образуя ядро, а наименее плотные, наоборот, поднимались на поверхность, образуя земную кору. Примерно так же расслаивается соус для салата, если его надолго оставить на столе. Этот процесс, называемый дифференциацией магмы, объясняет внутреннее строение Земли.
У самых маленьких внутренних планет, Меркурия и Марса (а также у Луны), это тепло в конце концов выходило на поверхность и рассеивалось в космосе. Затем планеты затвердевали и (как в случае с Меркурием) в последующие несколько миллиардов лет проявляли низкую геологическую активность. история Земли была совсем другой. Поскольку Земля — самая крупная из внутренних планет, в ней сохранился и самый большой запас тепла. А чем крупнее планета, тем меньше у нее отношение площади поверхности к объему и тем меньше она теряет тепла. Следовательно, Земля остывала медленнее, чем другие внутренние планеты. (То же самое можно сказать и о Венере, размер которой немного меньше Земли.)
Кроме того, с начала формирования Земли в ней происходил распад радиоактивных элементов, что увеличивало запас тепла в ее недрах. Следовательно, Землю можно рассматривать как шарообразную печь. Внутри нее непрерывно образуется тепло, переносится к поверхности и излучается в космос. Перенос тепла вызывает ответное перемещение мантии — оболочки Земли, расположенной между ядром и земной корой на глубине от нескольких десятков до 2900 км (см. теплообмен). Горячее вещество из глубины мантии поднимается, охлаждается, а затем вновь погружается, замещаясь новым горячим веществом. Это классический пример конвективной ячейки.
Можно сказать, что порода мантии бурлит так же, как вода в чайнике: и в том, и в другом случае тепло переносится в процессе конвекции. Некоторые геологи считают, что для завершения полного конвективного цикла породам мантии требуется несколько сотен миллионов лет — по человеческим меркам очень большое время. известно, что многие вещества с течением времени медленно деформируются, хотя на протяжении человеческой жизни они выглядят абсолютно твердыми и неподвижными. Например,
На карте рельефа Земли, включающей океанское дно, видны основные плиты, составляющие земную поверхность (более мелкие плиты для простоты не обозначены). В местах срединно-океанических хребтов плиты расходятся, а в местах основных горных хребтов сталкиваются
в средневековых соборах старинные оконные стекла внизу толще, чем наверху, потому что в течение многих веков стекло стекало вниз под действием силы тяжести. Если за несколько столетий это происходит с твердым стеклом, то нетрудно представить себе, что то же самое может произойти с твердыми горными породами за сотни миллионов лет.
Наверху конвективных ячеек земной мантии плавают породы, составляющие твердую поверхность Земли, — так называемые тектонические плиты. Эти плиты состоят из базальта, самой распространенной излившейся магматической горной породы. Толщина этих плит примерно 10-120 км, и они перемещаются по поверхности частично расплавленной мантии. Материки, состоящие из относительно легких пород, таких как гранит, образуют самый верхний слой плит. В большинстве случаев толщина плит под материками больше, чем под океанами. Со временем процессы, происходящие внутри Земли, сдвигают плиты, вызывая их столкновение и растрескивание, вплоть до образования новых плит или исчезновения старых. именно благодаря этому медленному, но непрерывному перемещению плит поверхность нашей планеты все время находится в динамике, постоянно изменяясь.
Важно понимать, что понятия «плита» и «материк» — не одно и то же. Например, Северо-Американская тектоническая плита простирается от середины Атлантического океана до западного побережья Северо-Американского континента. Часть плиты покрыта водой, часть — сушей. Анатолийская плита, на которой расположены Турция и Ближний Восток, полностью покрыта сушей, в то время как Тихоокеанская плита расположена полностью под Тихим океаном. То есть границы плит и береговые линии материков не обязательно совпадают. Кстати, слово «тектоника» происходит от греческого слова /вШоп («строитель») — тот же корень есть и в слове «архитектор» — и подразумевает процесс строительства или сборки.
Тектоника плит заметнее всего там, где плиты соприкасаются друг с другом. Принято выделять три типа границ между плитами.
Дивергентные границы
В середине Атлантического океана поднимается к поверхности раскаленная магма, образовавшаяся в глубине мантии. Она прорывается сквозь поверхность и растекается, постепенно заполняя собой трещину между раздвигающимися плитами. Из-за этого морское дно расширяется и Европа и Северная Америка расходятся в стороны со скоростью несколько сантиметров в год. (Это движение смогли измерить с помощью радиотелескопов, расположенных на двух континентах, сравнив время прихода радиосигнала от далеких квазаров.)
Если дивергентная граница расположена под океаном, в результате расхождения плит возникает срединно-океанический хребет — горная цепь, образованная за счет скопления вещества в том месте, где оно выходит на поверхность. Срединно-Атланти-ческий хребет, простирающийся от Исландии до Фолклендов, — это самая длинная горная цепь на Земле. Если же дивергентная граница находится под материком, она буквально разрывает его. Примером такого процесса, происходящего в наши дни, служит Великая долина разломов, простирающаяся от Иордании на юг в Восточную Африку.
Конвергентные границы
Если на дивергентных границах образуется новая кора, значит, где-то в другом месте кора должна разрушаться, иначе Земля увеличивалась бы в размерах. При столкновении двух плит одна из них пододвигается под другую (это явление называется субдукцией, или пододвиганием). При этом плита, оказавшаяся внизу, погружается в мантию. Что происходит на поверхности над зоной субдукции, зависит от местонахождения границ плиты: под материком, на границе материка или под океаном.
Если зона субдукции расположена под океанической корой, то в результате пододвигания образуется глубокая срединно-океани-ческая впадина (желоб). Примером этого может служить самое глубокое место в Мировом океане — Марианская впадина около Филиппин. Вещество нижней плиты попадает в глубь магмы и расплавляется там, а потом может опять подняться к поверхности, образуя гряду вулканов — как, например, цепь вулканов на востоке Карибского моря и на западном берегу Соединенных Штатов.
Если обе плиты на конвергентной границе находятся под материками, результат будет совсем другим. Материковая кора состоит из легких веществ, и обе плиты фактически плавают над зоной субдукции. Поскольку одна плита пододвигается под другую, два материка сталкиваются и их границы сминаются, образуя материковый горный хребет. Так сформировались Гималаи, когда Индийская плита около 50 миллионов лет назад столкнулась с Евразийской. В результате такого же процесса сформировались и Альпы, когда Италия соединилась с Европой. А Уральские горы, старую горную цепь, можно назвать «сварочным швом», образовавшимся при объединении европейского и азиатского массивов.
Если материк покоится только на одной из плит, на нем будут образовываться складки и смятия по мере его наползания на зону субдукции. Примером этого служат Анды на Западном побережье Южной Америки. Они сформировались после того, как ЮжноАмериканская плита наплыла на погрузившуюся под нее плиту Наска в Тихом океане.
Трансформные границы
иногда бывает так, что две плиты не расходятся и не пододвигаются друг под друга, а просто трутся краями. Самый известный пример такой границы — разлом Сан-Андреас в Калифорнии, где движутся бок о бок Тихоокеанская и Северо-Американская плиты. В случае трансформной границы плиты сталкиваются на время, а затем расходятся, высвобождая много энергии и вызывая сильные землетрясения.
АЛЬФРЕД ЛОТАР БЕГЕНЕР
(Alfred Lothar Wegener, 18801930) — немецкий метеоролог и геолог. Родился в Берлине, где и получил в 1905 году степень доктора астрономии. Перед Первой мировой войной Вегенер читал лекции по астрономии и метеорологии в Мар-бургском университете; после войны стал профессором метеорологии и
В заключение я хотел бы подчеркнуть, что, хотя тектоника плит включает в себя понятие о движении материков, это не то же самое, что гипотеза дрейфа материков, предложенная в начале ХХ века. Эта гипотеза была отвергнута (справедливо, по мнению автора) геологами из-за некоторых экспериментальных и теоретических неувязок. и тот факт, что наша современная теория включает в себя один аспект из гипотезы дрейфа материков — перемещение материков, — не означает, что ученые отвергли тектонику плит в начале прошлого века только для того, чтобы принять ее позже. Теория, которая принята сейчас, коренным образом отличается от прежней.
геофизики на специально созданной для него кафедре в университете города Грац в Австрии. Для доказательства своей теории дрейфа материков Вегенер организовал несколько экспедиций, чтобы провести измерения, показавшие, что Гренландия и Европа расходятся. Погиб в Гренландии, во время своей четвертой экспедиции.
Темная материя
Большая часть материи, составляющей Вселенную, надежно скрыта от наших глаз
1609, • ЗАКОНЫ КЕПЛЕРА 1619
1933 • ТЕМНАЯ МАТЕРИЯ
1980-е • РАННЯЯ ВСЕЛЕННАЯ
1990-е • КОСМИЧЕСКИЙ ТРЕУГОЛЬНИК
Составляя у себя в голове наглядное представление о строении галактики, мы, вероятно, видим перед собой спирали из звезд, вращающиеся в черной космической пустоте. Имея очень мощный телескоп, мы бы могли и реально рассмотреть отдельные звезды, составляющие рукава спиральных галактик, поскольку они излучают достаточное количество света и других волн. Смогли бы мы «рассмотреть» и темные области внутри галактик — облака межзвездной пыли и газа, поглощающие, а не испускающие свет.
Однако в течение XX столетия астрофизики постепенно пришли к заключению, что в видимых и ставших привычными образах галактик содержится не более 10% от реально содержащейся во Вселенной материи. Примерно на 90% Вселенная состоит из материи, форма которой остается для нас тайной, поскольку наблюдать ее мы не можем, и по совокупности вся эта темная материя получила название темной материи. (Иногда еще говорят о недостающей массе, однако этот термин нельзя назвать удачным, поскольку в такой терминологии ее лучше было бы, вероятно, назвать избыточной.) Впервые тайные откровения подобного рода в далеком 1933 году озвучил швейцарский астроном Фриц Цвики (Fritz Zwicky, 1898-1974). Именно он указал, что скопление галактик в созвездии Волосы Вероники, судя по всему, удерживается вместе гораздо более сильным гравитационным полем, чем это можно было бы предположить, исходя из видимой массы вещества, содержащегося в этом галактическом скоплении, а значит, большая часть материи, содержащаяся в этой области Вселенной, остается незримой для нас.
В 1970-е годы Вера Рубин, научная сотрудница Института Кар-неги (Вашингтон), изучала динамику галактик, характеризующихся высокой скоростью вращения вокруг их центра, — прежде всего поведение вещества на их периферии. По всем параметрам на периферию быстро вращающихся галактик должны были — по принципу центрифуги — выбрасываться значительные массы самого легкого межзвездного газа, а именно водорода, атомы которого теоретически должны были бы окутывать галактику паутиной микроскопических спутников. Рассмотрим в качестве примера нашу Солнечную систему. Ее основная масса сосредоточена в центре (на Солнце); чем дальше планета удалена от центра, тем дольше период ее обращения вокруг него. Юпитеру, например, требуется одиннадцать земных лет, чтобы совершить полный годичный оборот вокруг Солнца, поскольку он находится на значительно более удаленной от Солнца орбите и за один годичный цикл проделывает не только более долгий путь, но и движется по нему медленнее (см. законы кеплера). Аналогичным образом, если бы все вещество спиральной галактики было сконцентрировано в ее рукавах, где мы наблюдаем видимые звезды, то и атомы распыленного водорода, подчиняясь третьему закону Кеплера, двигались бы все медленнее по мере удаления от центра галактической массы. Рубин, однако же, удалось экспериментально выяснить, что на любом удалении
от центра галактики водород движется с неизменной скоростью. Можно подумать, будто он «приклеен» к гигантской вращающейся сфере, состоящей из некоей невидимой материи.
Теперь-то мы знаем, что темная материя незримо присутствует не только в пределах галактик, но и во всей Вселенной, включая межгалактическое пространство. о чем мы, однако, так и не имеем никакого представления, так это о ее природе. Какая-то ее часть может оказаться обычными небесными телами, не испускающими собственного излучения, например, массивными планетами типа Юпитера. Их существование подтверждается результатами наблюдения за светимостью звезд ближайших галактик, где иногда отмечаются «провалы», которые можно отнести на счет их частичного затмения при прохождении крупных планет на пути лучей по дороге к нам. Практически можно считать подтвержденным и существование межзвездных затмевающих тел, не обладающих собственной энергией излучения в наблюдаемом диапазоне, — они получили название «массивные компактные гало-объекты».
однако подавляющее большинство ученых сходится на том, что масса невидимой материи Вселенной далеко не ограничивается скрытой от нас массой обычных небесных тел и распыленного вещества, а склонны добавлять к ней и совокупную массу все еще не открытых видов элементарных частиц. Их принято называть массивными частицами слабого взаимодействия (МЧСВ). они никак не проявляют себя во взаимодействии со световым и прочим электромагнитным излучением. их поиск сегодня — это своего рода возобновление, казалось бы, давно утратившего актуальность поиска «светоносного эфира» (см. опыт майкель-сона—морли). Идея состоит в том, что если наша Галактика действительно со всех сторон облачена сферической оболочкой МЧСВ, Земля в силу своего движения должна постоянно находиться под воздействием «ветра скрытых частиц», пронизывающих ее аналогично тому, как даже в самую безветренную погоду автомобиль обдувается встречными воздушными потоками. рано или поздно одна из частиц такого «темного ветра» вступит во взаимодействие с одним из земных атомов и возбудит колебания, необходимые для ее регистрации сверхчувствительным прибором, в котором он покоится. Лаборатории, проводящие подобные эксперименты, уже сообщают о том, что получены первые намеки на подтверждение реального существования шестимесячного полупериода колебания частоты регистрации сигналов об аномальных событиях подобного ряда, а именно этого и следовало ожидать, поскольку полгода Земля движется по околосолнечной орбите навстречу ветру скрытых частиц, а в следующие полгода ветер дует «вдогонку» и частицы залетают на Землю реже.
МЧСВ представляют собой пример того, что принято называть холодной темной материей, поскольку они тяжелые и медленные. Предполагается, что они играли важную роль на стадии формирования галактик ранней вселенной. Некоторые ученые считают также, что по крайней мере часть темной материи пребывает в состоянии быстрых слабовзаимодействующих частиц, таких как нейтрино, представляющих собой пример горячей темной материи. Главная проблема тут в том, что до формирования атомов, то есть на протяжении примерно первых 300 000 лет после Большого взрыва, Вселенная пребывала в протоплазменном состоянии. Любое ядро привычной нам материи распадалось, не успев сформироваться, под мощнейшими энергиями бомбардировки со стороны перегретых частиц раскаленной сверхплотной непрозрачной плазмы. После того как Вселенная расширилась до некоторой степени прозрачности разделяющего вещество пространства, начали наконец формироваться легкие атомные ядра. Но, увы, к этому моменту Вселенная расширилась уже настолько, что силы гравитационного притяжения не могли противодействовать кинетической энергии разлета осколков Большого взрыва и все вещество по идее должно было бы разлететься, не дав сформироваться устойчивым галактикам, которые мы наблюдаем. В этом состоял так называемый галактический парадокс, ставивший под сомнение саму теорию БОЛЬШОГО ВЗРЫВА .
Однако, если во всем пространстве объемного большого взрыва обычная материя была перемешана со скрытыми частицами темной материи, после взрыва темная материя, будучи перемешанной с явной, как раз и могла послужить тем самым сдерживающим элементом. По причине наличия огромного числа скрытых тяжелых частиц она первой стянулась под воздействием сил гравитационного притяжения в будущие ядра галактик, оказавшиеся стабильными по причине отсутствия взаимодействия между МЧСВ и мощным центростремительным энергетическим излучением взрыва. Таким образом, к моменту формирования ядер атомов темная материя успела оформиться в галактики и скопления галактик, а уже на них начали собираться под воздействием гравитационного поля высвобождающиеся элементы обычной материи. В рамках такой модели обычная материя стянулась к сгусткам темной материи подобно сухим листьям, затягиваемым в водовороты на темной поверхности быстрой реки. Есть о чем задуматься, не правда ли? Не только мы, но и вся наша галактика, и весь зримый материальный мир могут оказаться всего лишь пеной на поверхности странной вселенской игры в прятки.