Н. Ф. Экология (теории, законы, правила принципы и гипотезы) —
Вид материала | Закон |
Содержание3.10. Общие закономерности организации экосферы и биосферы земли |
- Н. Ф. Экология (теории, законы, правила принципы и гипотезы), 7082.09kb.
- Ы и темы рабочей программы для сам изучения. Перечень вопросов для сам изучения, 128.89kb.
- Тематика лекций (Наименование тем, содержание, объём в часах) № п/п, 74.97kb.
- Законы сохранения и принципы симметрии, 283.17kb.
- Проверка статистических гипотез, 59.38kb.
- Аннотация дисциплины «Экология человека» Общая трудоемкость изучения дисциплины составляет, 16.4kb.
- Программа вступительного экзамена в аспирантуру по специальной дисциплине 03. 02., 89.09kb.
- Авторское право. Терминология, 213.44kb.
- Требования к экзамену по философии, 41.96kb.
- Исследование о влиянии эволюционной теории на учение о политическом развитии народов, 10156.41kb.
1) консорционной целостности: с исчезновением из экосистемы вида, образующего консорцию, исчезают и многие консорбенты, не входящие в другие консорции той же или другой территориально и функционально близкой экосистемы (принцип «никто не гибнет в одиночку»);
2) биологического замещения: вновь внедрившийся в экосистему вид всегда, вырабатывая свою экологическую нишу, сужает возможности менее конкурентоспособных видов и тем ведет к их исчезновению или лишь слегка видоизменяет экологические ниши функционально близких видов, создавая предпосылки для сокращения их численности или, наоборот, массового размножения («принцип незваного гостя»); при этом меняется все сообщество, включая даже как будто не связанные с внедрившимся видом формы (в силу смещения общего экологического равновесия);
3) смены трофических цепей (сетей): исчезнувшая трофическая цепь (сеть) видов сменяется цепью (сетью) эколого-энергетических аналогов, что позволяет экосистеме усваивать и перерабатывать поступающую извне энергию. Этот принцип вытекает из правила экологического дублирования (разд. 3.8.1) и кратко звучит: «экосистема не терпит пустоты»;
4) неопределенности хозяйственного значения смены видов: при замене трофических цепей (сетей) вновь проникающие в экосистему (в редких случаях возникающие в ней) виды могут быть как желательными, так и нежелательными в хозяйственном и медицинском отношении (принцип «старый друг лучше новых двух»).
Перечисленные принципы имеют большое практическое значение и тесно связаны с тем, что будет сказано о законах природопользования в разд. 3.14. Вместе с тем они как бы перебрасывают мостик от структурно-функциональных свойств экосистем к их динамике.
3.9.2. Динамика экосистем
|
Сложение экосистемы — динамический процесс. Ее формируют виды, дополняющие друг друга и соответствующие другим видам и условиям среды — сами по себе и в складывающейся совокупности. При этом происходит выработка экологических ниш — функциональное размежевание в возникающем множестве или его дополнение при малом разнообразии. На жизнепригодном субстрате биотические сообщества последовательно формируют закономерный ряд экосистем, ведущий к наиболее устойчивой в данных условиях климаксовой в чисто природных условиях или узловой при природно-антропогенном режиме фазе. В этом смысл принципа сукцессионного замещения. При антропогенном или зоогенном поддержании какой-то из фаз сукцессии возникают параклимаксы. Спор о возможности поликлимаксов кажется чисто умозрительным. В строго определенных условиях возможен только моноклимакс. Если возникают различные варианты климакса — поликлимакс, значит, наблюдаются отклонения в среде обитания. Столь категорическое утверждение следует из парадигмы детерминированности развития. Оно всегда однонаправленно согласно значительному блоку общесистемных закономерностей (см. разд. 3.2.1 — 3.2.5), а также обобщениям, приведенным в разд. 3.9.1.
Сказанное не означает, что регионально не существует мозаика климаксовых экосистем, обусловленная топографическими, геоморфологическими и другими условиями среды. Именно такая мозаика лежит в основе теории мозаичного климакса, развитой Р. Уиттекером в 1957 г. Картосхема биотопов, основанная на ландшафтно-геоботанической, а, вернее, экосистемной идеологии и приведенная на рис. 3.3, может служить иллюстрацией к теории Р. Уиттекера: сукцессионные ряды в долине реки, в сосняках, протянувшихся вдоль нее, в лесах склонов гор и на их верхних частях составляют достаточно четкую мозаику. Если бы была приведена карта восстановленной растительности, эта закономерность выступила бы еще ярче. Но это не значит, что, скажем, климакс приречного ельника может как угодно варьировать.
Смена фаз сукцессии идет в соответствии с определенными правилами. Каждая фаза готовит среду для возникновения последующей. Тут действует закон последовательности прохождения фаз развития, рассмотренный в разделе 3.2.2. Существует тенденция считать, что этот закон в рамках сукцессионного процесса не действует или не обязательно действует. При этом происходит смешение понятий естественного развития и смены экосистем и искусственной культивации, в основном леса. Нередко, оставив экосистему в рамках полуестественного развития и только посадив саженцы лесной породы, хозяйственник не получает ожидаемого эффекта — посадки гибнут. При этом причины могут быть самыми различными, но всегда они связаны с неподготовленностью желаемой фазы развития реальной предыдущей.
Когда экосистема приближается к состоянию климакса, в ней, как и во всех равновесных системах, происходит замедление всех процессов развития. Это положение сформулировано в виде закона сукцессионного замедления: процессы, идущие в зрелых равновесных экосистемах, находящихся в устойчивом состоянии, как правило, проявляют тенденцию к снижению темпов. При этом восстановительный тип сукцессии меняется на вековой их ход, т. е. саморазвитие идет в пределах климакса или узлового сообщества. Например, восстановительная сукцессия темнохвойного леса в южной тайге может идти следующим образом. Сначала быстро меняется ряд луго-кустарниковых фаз с образованием березового или осинового леса. Затем может произойти либо замещение этого леса сосной, либо прямое вытеснение елью (в горной южной Сибири пихтово-кедровым лесом). Сосняк может составить узловое сообщество, и процесс смены пород резко затормозится, но в других случаях сосну относительно быстро вытесняет ель или пихтово-кедровый лес. Эти климаксовые образования отнюдь не лишены тенденций к развитию, но оно резко заторможено. Вековая сукцессия идет по типу заболачивание — разболачивание или остепнение — расстепнение (по климатическим характеристикам, а не по доминирующему характеру растительности). Возможен и вариант образования вечной мерзлоты, и тогда темно-хвойный лес в Сибири и на Дальнем Востоке будет медленно вытеснен лиственничным. В речных долинах на Дальнем Востоке может образоваться параклимакс из чозении. В этом случае процессы развития также весьма замедленны. Совершенно очевидно, что при хозяйственных акциях учет скорости естественных процессов обязателен.
Эмпирический закон сукцессионного замедления есть следствие правила Г. Одума и Р. Пинкертона, или правила максимума энергии поддержания зрелой системы: сукцессия идет в направлении фундаментального сдвига потока энергии в сторону увеличения ее количества, направленного на поддержание системы. В свою очередь правило Г. Одума и Р. Пинкертона базируется на правиле максимума энергии в биологических системах, сформулированном А. Лоткой. Позже оно было расширено Р. Маргалефом. Вопрос этот хорошо разработан в фундаментальной монографии Ю. Одума «Основы экологии» (М.: Мир, 1975. С. 324 — 327) как и доказательство принципа «нулевого максимума», или минимизации прироста в зрелой экосистеме: экосистема в сукцессионном развитии стремится к образованию наибольшей биомассы при наименьшей биологической продуктивности*. Этот факт совершенно очевидно вытекает из правила Г. Одума и Р. Пинкертона и служит эмпирической его иллюстрацией. В общем виде правилом Г. Одума и Р. Пинкертона объясняется и принцип «сукцессионного очищения», или стабилизации и минимизации видового состава климакса: разнообразие стремится к пику на ранних или средних фазах сукцессии, а затем снижается в климаксе. Этот постулат Р. Маргалефа явно связан с увеличением потока энергии, поддерживающего климакс. Совершенно очевидна его связь с принципами экологического высвобождения и экологической компрессии, сформулированными в разделе 3.8.3.
* Нечто подобное происходит и при общественном развитии. ** Bormann F. Н., Likens G. Е. Pattern and Process in a forested Ecosystem. Springer — Verlag, N.-Y., 1979. 253 p. |
Снижение разнообразия видов в климаксе не означает малой его экологической значимости. В этом отношении вопрос Ю. Одума в вышеупомянутой работе: «представляет ли собой разнообразие только «приправу» к жизни или оно необходимо для долгой жизни всей экосистемы, в которую входят и человек и природа» (с. 331) кажется не совсем корректным. Именно разнообразие видов формирует сукцессию, ее направление, обеспечивает заполненность реального пространства жизнью. Если бы оно было несущественным и имело только «эстетическое» значение, то виды, составляющие комплекс, не могли бы сформировать сукцессионный ряд, и постепенно, с разрушением климаксовых экосистем произошло бы полное опустынивание планеты. Ведь значение разнообразия функционально не только в статике, но и в динамике.
Там, где разнообразие видов недостаточно для формирования биосреды служащей основой нормального, естественного хода сукцессионного процесса, а сама среда резко нарушена (по глубине или частоте нарушений), сукцессия не достигает фазы климакса, а заканчивается узловым сообществом, параклимаксом, длительно- или даже кратковременнопроизводным сообществом. Качество среды данной территории, суммарная напряженность антропогенного воздействия отражается на степени завершенности сукцессионного ряда. Чем глубже нарушенность среды какого-то пространства, тем на более ранних фазах оканчивается сукцессия. Это правило сукцессионного мониторинга (индикации состояния среды), или степени завершенности сукцессии, как кажется, имеет вполне практическое значение, особенно в картировании экологического состояния территорий и акваторий.
Достижение климакса при потере одного или группы видов в результате их уничтожения (реже вымирания, тоже, как правило, связанного с антропогенным исчезновением местообитаний) не есть полное восстановление природной обстановки. Фактически это новая экосистема, так как в ней возникли новые связи и утеряны многие старые, сложилась иная «притертость» видов. Вернуться в старое состояние экосистема не может, так как утерянный вид невосстановим. Это позволяет сформулировать закон эволюционно-экологической необратимости: экосистема, потерявшая часть своих элементов или сменившаяся другой в результате дисбаланса экологических компонентов, не может вернуться к первоначальному своему состоянию в ходе сукцессии, если в ходе изменений произошли эволюционные перемены в экологических элементах (сохранившихся или временно утерянных) или один либо группа видов исчезла навсегда или на (системно) долгий срок. Если какие-то виды утеряны в промежуточных фазах сукцессии, то эта потеря может быть функционально скомпенсирована, но лишь частично. При снижении разнообразия за критический уровень ход сукцессии искажается и фактически климакс, идентичный прошлому, достигнут быть не может.
Закон эволюционно-экологической необратимости важен для оценки характера восстановленных экосистем. При потере элементов это, по сути дела, совершенно экологически новые природные образования с вновь образовавшимися закономерностями и связями. Например, перенос давно выбывшего из состава экосистемы вида в ходе его реакклиматизации — отнюдь не механическое его возвращение. Фактически это внедрение нового вида в обновленную экосистему.
Закон эволюционно-экологической необратимости подчеркивает фактическую направленность эволюции не только на уровне биосистем (разд. 3.4.1), но и на всех иных иерархических уровнях сложения биоты (разд. 3.11).
Перечисленными обобщениями не исчерпывается список закономер-для экосистем во всем ряду их иерархии. Ряд из них, в большей мере характерных для экосистем высоких иерархических уровней или даже только для высшего звена — биосферы, изложен в разделах 3.10 и 3.11. Наоборот, сказанное в разделе 3.9 в ряде случаев присуще биосфере и ее крупнейшим системным подразделениям.
3.10. ОБЩИЕ ЗАКОНОМЕРНОСТИ ОРГАНИЗАЦИИ ЭКОСФЕРЫ И БИОСФЕРЫ ЗЕМЛИ
|
Стоит еще раз напомнить, что современная экология исходит из аксиомы иерархической организации, или принципа интегративных уровней — подсистем различного функционального значения. При этом подразумевается и признание аксиомы эмерджентности (разд. 3.2.1). Несколько забегая вперед, следует указать на справедливость закона преломления космических воздействий: космические факторы, оказывая воздействие на биосферу и особенно ее подразделения, подвергаются изменению со стороны экосферы планеты и потому по силе и времени проявления могут быть ослаблены и сдвинуты или даже полностью утерять свой эффект. Такое обобщение полезно в связи с тем, что нередко идет поток синхронного воздействия солнечной активности и других космических факторов на экосистемы планеты и населяющие ее организмы. Хотя многие процессы на Земле и в ее биосфере подвержены влиянию космоса и предполагаются циклы солнечной активности с интервалом в 1850, 600, 400, 178, 169, 88, 83, 33, 22, 16,1, 11,5 (11,1), 6,5 и 4,3 года, сама биосфера и ее подразделения не обязательно во всех случаях должны реагировать с той же цикличностью.
Системы биосферы могут блокировать космические воздействия нацело или частично. Поиск чисто математических закономерностей тут едва ли целесообразен (см. также принцип скользящих среднемаксимальных случайного статистического ряда в разд. 3.2.5). Тенденции существуют, но они не четко детерминированы во времени.
Биосферу, как и любую другую систему, формируют не только и не столько внешние факторы, как внутренние закономерности. И они затем взаимодействуют с внешней средой. Одним из важнейших свойств биосферы — слоя взаимодействия живого и неживого — является закон биогенной миграции атомов, открытый В. И. Вернадским: «миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция) или же она протекает в среде, геохимические особенности которой (О2, СО2, Н2 и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей человеческой истории» (Перельман А. Н. Геохимия биосферы. М., 1973. С. 19).
Закон биогенной миграции атомов имеет важное теоретическое и практическое значение. Согласно ему понимание общих химических процессов на поверхности планеты, в атмосфере над нею и в заселенных организмами ее глубинах, а также в слоях, сложенных прошлой деятельностью организмов, невозможно без учета биотических и биогенных факторов, в том числе эволюционных. Поскольку люди очень сильно воздействуют прежде всего на биосферу и ее живое население, они тем самым изменяют условия биогенной миграции атомов, создавая предпосылки для еще более глубоких химических сдвигов в исторической перспективе. Таким образом, процесс может стать саморазвивающимся, не зависящим от желания человека и практически (при глобальном размахе) неуправляемым. Отсюда одна из самых насущных потребностей — сохранение живого покрова Земли в относительно неизменном состоянии. Тот же закон определяет и необходимость учета прежде всего воздействий на биоту при любых проектах преобразования природы. В этом случае происходят региональные и локальные изменения в химических процессах, при любых крупных ошибках ведущие к деградации среды — опустыниванию.
Закон биогенной миграции атомов дает в руки человечества ключи для сознательного управления биогеохимическими процессами на планете и в ее регионах. Там, где ранее были сделаны упущения, и среда жизни деградировала, на его основе возможно активное (но постепенное) выправление сложившегося положения, главным образом с помощью «мягкого», опосредованного управления природными процессами.
Обобщения особенностей биогенной миграции атомов нам не известны. Пока идет сбор фактических данных. Они показывают, что хотя степень замкнутости глобальных биогеохимических круговоротов довольно высока (для различных элементов и веществ она неодинакова), тем не менее она не абсолютна. И этот факт для того, чтобы не возникало недоразумений, нуждается в формулировке в виде правила незамкнутости биотических круговоротов. Доказательства этой закономерности очень многочисленны. Это и образование биогенных геологических пород, и реальное антропогенное выпадение ряда элементов, например, из почвы (предполагается, что ежегодно глобально из почвы теряется в среднем 4,6 млрд. т углерода, содержание которого в почвах мира снизилось с 2014 млрд. т в доисторический период до 1477 млрд. т на конец 70-х гг. нашего века. И, наконец, та логическая посылка, что в условиях полной замкнутости биотических круговоротов не происходило бы эволюции (наивысшая степень замкнутости биогеоценотического «малого» круга наблюдается в тропических экосистемах — наиболее древних и консервативных).
В то же самое время количество живого вещества не подвержено заметным изменениям, во всяком случае в рамках значительных геологических отрезков времени. Эта закономерность была сформулирована в виде закона константности количества живого вещества В. И. Вернадского: количество живого вещества биосферы (для данного геологического периода) есть константа. Этот закон практически есть количественное следствие закона внутреннего динамического равновесия для масштаба глобальной экосистемы биосферы (разд. 3.9.1). Понятно, что поскольку живое вещество, согласно закону биогенной миграции атомов, есть энергетический посредник между Солнцем и Землей, то либо его количество должно быть постоянным, либо должны меняться его энергетические характеристики. Закон физико-химического единства живого вещества (разд. 3.3) исключает слишком значительные перемены в последнем свойстве. Значит, для живого вещества планеты неизбежна количественная стабильность. Она характерна и для числа видов — см. правило константности числа видов (разд. 3.11).
Как аккумулятор солнечной энергии, живое вещество должно одновременно реагировать как на внешние (космические) воздействия, так и на внутренние изменения. Увеличение или снижение количества живого вещества в одном месте биосферы должно приводить к синхронному процессу с обратным знаком в другом регионе в силу того, что освободившиеся биогены могут быть ассимилированы остальной частью живого или будет наблюдаться их недостаток. Однако следует учитывать скорость процесса, в случае антропогенного изменения намного более низкую, чем прямое нарушение природы человеком. Кроме того, не всегда происходит адекватная замена. Она идет согласно правилу (принципу) экологического дублирования (разд. 3.8.1), т. е. с уменьшением размеров особей и обычно с увеличением их эволюционной примитивности. Снижение же размеров особей, участвующих в энергетических процессах, вводит в действие большую группу термодинамических закономерностей из всех групп приведенных выше обобщений (разд. 3.2 — 3.9). Меняется вся структура живого вещества и его качество, что в конечном итоге не может идти на пользу человеку — одному из участников процесса жизни. Человечество нарушает природные закономерности распределения живого вещества планеты и берет на себя, в свой антропогенный канал, не менее 1,6 × 1013 Вт энергии в год, или 20% продукции всей биосферы*. Кроме того, люди искусственно и нескомпенсированно снизили количество живого вещества Земли, видимо, не менее чем на 30%. Это заставляет сделать вывод, что планета стоит перед глобальным термодинамическим (тепловым) кризисом, который проявится во многих формах одновременно. Поскольку это инерционный процесс, начальные фазы его мало заметны, но остановить кризисные явления будет чрезвычайно трудно.
* Горшков В. Б. Биосферные потоки энергии//Рациональное использование природных ресурсов и охрана окружающей среды. Ленинград. 1980. № 3. С. 19 — 24. ** Goldsmith E. Thermodynamics or Ecodynamics?//Ecologist. 1981. V. 11. № 4. P. 178—195. |
Для сохранения структуры биосферы живое стремится к достижению состояния зрелости, или экологического равновесия. Закон стремления к климаксу — второй закон экодинамики Ю. Голдсмита. Он близок к принципу сукцессионного замещения и мог бы войти в состав раздела 3.9.2, где собраны обобщения, касающиеся экосистем. Биосфера — высший уровень иерархии экосистем нашей планеты, и естественно, ее законы функционирования аналогово справедливы и для ниже расположенных уровней в этой иерархии, хотя имеется и специфика — биосфера более закрытая система, чем ее подразделения. Упоминаем обо всем этом вторично, так как это не всегда очевидно.
Единство живого вещества биосферы и гомологичность строения ее подсистем приводят к тому, что эволюционно возникшие на ней живые элементы различного геологического возраста и первоначального географического происхождения сложно переплетены. Такое переплетение различных по пространственно-временному генезису элементов во всей экологической иерархии биосферы составляет содержание правила, или принципа гетерогенезиса живого вещества. Однако такое сложение не хаотично. Оно подчиняется принципам экологической комплементарности (дополнительности), экологической конгруэнтности (соответствия) и другим закономерностям, изложенным в разделе 3.9.1. Обобщенно в рамках экодинамики Ю. Голдсмита это третий её закон — принцип экологического порядка, или экологического мутуализма. Это уже глобальное свойство, обусловленное влиянием целого на его части, обратного воздействия дифференцированных частей на развитие целого и т. д., в сумме ведущее к сохранению стабильности всей системы биосферы.
Системный мутуализм, т. е. взаимопомощь в рамках экологического порядка, подчеркивается законом упорядоченности заполнения пространства и пространственно-временной определенности: заполнение пространства внутри природной системы в силу взаимодействия между ее подсистемами упорядочено таким образом, что позволяет реализоваться гомеостатическим свойствам системы с минимальными противоречиями между частями внутри нее*.
* См. Реймерс Н. Ф. Системные основы природопользования//Философские проблемы глобальной экологии. М.: Наука, 1983. С. 121 —161. |
В блок правил мутуалистического системного порядка в биосфере и, как следствие, в развитое человеческое общество входит принцип системной дополнительности: подсистемы одной природной системы (в нашем случае биосферы) в своем развитии обеспечивают предпосылку для успешного развития и саморегуляции других подсистем, входящих в ту же систему (если она не подвергается мощной внешней деформации). Этот динамический вариант закона упорядоченности заполнения пространства и пространственно-временной определенности справедлив и для современного общественного развития — человечество будет развиваться успешнее, если мировое сотрудничество расширится, а конфронтация угаснет. Этот принцип стал необходимым условием жизни человечества с момента превращения его в единое целое, во всеобщую «геологическую силу», по В. И. Вернадскому, воздействующую на столь же глобальную биосферу. Либо будет соблюдаться принцип системной дополнительности в связке человек — природа, либо экологический кризис будет углубляться, и произойдет катастрофа.
И тут человечеству необходимо следовать четвертому закону экодинамики Ю. Голдсмита — закону самоконтроля и саморегуляции живого: живые системы и системы под управляющим воздействием живого способны к самоконтролю и саморегулированию в процессе их адаптации к изменениям в окружающей среде. Ю. Голдсмит справедливо интерпретирует этот закон применительно к жизни общества. Человечеству не мешало бы начать собственную саморегуляцию и перейти к самоконтролю вместо того, чтобы с нарастающей экстенсивностью преобразовывать природу. Что касается природы, то в биосфере этот самоконтроль и саморегуляция происходят в ходе каскадных и цепных процессов общего взаимодействия, явлений иногда отнюдь не «гуманных» с позиций человеческой морали — в ходе борьбы за существование, естественного отбора (в самом широком смысле этих понятий), адаптации систем и подсистем, широкой коэволюции и т. п. Однако все эти процессы ведут к позитивным «с точки зрения природы» результатам — сохранению и развитию экосистем биосферы и ее как целого.
Как бы мостиком между обобщениями структурного и эволюционного характера служит правило автоматического поддержания глобальной среды обитания: живое вещество в ходе саморегуляции и взаимодействия с абиотическими факторами автодинамически поддерживает среду жизни, пригодную для ее развития. Процесс равновесной автодинамики ограничен изменениями космического и общеземного экосферного масштаба и происходит во всей иерархии экосистем и биосистем планеты как каскад саморегуляции, достигающей глобального размаха. Это правило следует из биогеохимических принципов В. И. Вернадского (разд. 3.3), а также из ранее сформулированных правил сохранения видовой среды обитания (разд. 3.6) и относительной внутренней непротиворечивости (разд. 3.8.3). Оно служит констатацией наличия в биосфере консервативных механизмов и одновременно иллюстрацией правила системно-динамической комплементарности (разд. 3.2.1).