Конспект лекций для студентов всех специальностей дневной и заочной формы обучения Челябинск
Вид материала | Конспект |
- Конспект лекций по курсу Начертательная геометрия (для студентов заочной формы обучения, 1032.28kb.
- Краткий конспект лекций Кемерово 2002 удк: 744 (075), 1231.26kb.
- Конспект лекций по курсу "Начертательная геометрия и инженерная графика" Кемерово 2002, 786.75kb.
- Методические указания по подготовке к семинарским занятиям для студентов дневной формы, 1587.03kb.
- Тематический план, рабочая программа и методические рекомендации к семинарским занятиям, 755.58kb.
- Планы семинарских занятий по дисциплине «Экономическая теория» для студентов технических, 527.66kb.
- Конспект лекций для студентов заочной формы обучения по дисциплине " Организация производства", 16.36kb.
- Методические указания для студентов всех специальностей дневной формы обучения Новосибирск, 320.91kb.
- Тематический план, рабочая программа и методические рекомендации к семинарским занятиям, 755.41kb.
- Методические указания к выполнению задания по черчению для студентов всех специальностей, 589.35kb.

В качественном анализе используют только те реакции, пределы обнаружения которых меньше 50 мкг.
Иногда то или иное вещество можно обнаружить в присутствии других веществ с использованием специфических реакций. Чаще всего мешающие идентификации вещества переводят в осадок, слабодиссоциирующее или комплексное соединение, то есть используют маскирующие или отделяющие реакции.
Количественный анализ
Определение содержания (концентрации, массы и т.п.) компонентов в анализируемом веществе называется количественным анализом. С его помощью выявляют массовые соотношения компонентов в анализируемом образце, концентрацию вещества в растворе или газе. При количественном анализе измеряют те или иные химические, физико-химические и физические параметры анализируемого образца, которые зависят от его состава или содержания того или иного компонента. Результаты анализа обычно выражают в массовых долях, %.
Количественный анализ проводят в определенной последовательности, в которую входят отбор и подготовка проб, проведение анализа, обработка и расчёт результатов анализа. Как и в качественном анализе, различают макро-, полумикро-, микро- и ультрамикрометоды. Количественный анализ широко используют для изучения состава руд, металлов, неорганических и органических соединений. Особое внимание обращается на определение содержания токсичных веществ в воздухе, водоёмах, почвах, продуктах питания, различных товарах.
Аналитический сигнал
Практически все методы анализа основаны на зависимости каких-либо доступных измерению свойств вещества от их состава. Как правило, находят и используют уравнение связи между свойством и составом, разрабатывают способы регистрации количественных характеристик свойства, которые называют аналитическим сигналом. Величину аналитического сигнала переводят в единицы, характеризующие количество или концентрацию компонента. Измеряемыми величинами могут быть масса, объём, светопоглощение, электрический ток и т.д.
Ниже приведены названия методов и измеряемые величины.
Измеряемая величина (свойство) | Название метода |
Масса | Гравиметрический Масс-спектрометрический |
Объём | Титриметрический Газоволюметрический |
Плотность | Денсиметрический |
Поглощение или испускание инфракрасных лучей | Инфракрасная спектроскопия |
Колебания молекул | Комбинационное рассеяние |
Поглощение или испускание видимых, ультрафиолетовых и рентгеновских лучей. Колебания атомов. Рассеяние света | Спектральный и рентгеноспектральный Фотометрический (колориметрия, спектрофотометрия идр.) Атомно-адсорбционная спектроскопия Люминесцентный анализ |
Диффузионный ток на электроде | Полярография и вольтамперометрия |
Электродный потенциал | Потенциометрический |
Количество электричества | Кулонометрический |
Электрическая проводимость | Кондуктометрический |
Радиоактивность | Радиоактивных индикаторов |
Скорость реакции | Кинетический Каталитический |
Тепловой эффект реакции | Термометрия и калориметрия |
Вязкость | Вискозиметрия |
Поверхностное натяжение | Тензометрия |
Понижение температуры замерзания | Криоскопия |
Повышение температуры кипения | Эбуллиоскопия |
Различная сорбция-десорбция | Хроматографический |
Химический анализ
Все методы количественного анализа делят на химические, физико-химические и физические. Это деление условно. К химическому анализу относятся гравиметрический, титриметрический, комплексонометрическое и окислительно-восстановительное титрование.
Гравиметрический метод. Сущность метода заключается в получении труднорастворимого соединения, в которое входит определяемый компонент. Затем, после отфильтровывания осадка, его высушивают, прокаливают и взвешивают. По массе вещества определяют массу нужного компонента, и проводят расчёт его массовой доли в анализируемой навеске. Имеются разновидности гравиметрического метода. Например, анализируемый компонент выделяют в виде газа, который взаимодействует с реактивом. По изменению массы реактива судят о содержании определяемого компонента в навеске. Например, СО32- + 2Н+ = Н2СО3 = Н2О + СО2, количество выделившегося углекислого газа можно определить по изменению массы вещества, например, СаО, с которым реагирует СО2. Гравиметрический метод трудоёмок и длителен.
Титриметрический анализ. Метод заключается в измерении объёма раствора, израсходованного на реакцию с анализируемым компонентом. Для этих целей используют титрованные растворы, то есть растворы с известной концентрацией – титром раствора. Определение проводят способом титрования, то есть постепенного приливания титрованного раствора к раствору анализируемого вещества, объём которого точно измерен. Титруют до достижения точки эквивалентности. Существует несколько разновидностей анализа: кислотно-основное, осадительное, комплексонометрическое, окислительно-восстановительное титрование.
Инструментальные методы анализа
Инструментальные методы анализа имеют массу достоинств: быстроту, высокую чувствительность, возможность одновременного определения нескольких компонентов, сочетание нескольких методов, автоматизация и использование компьютеров для обработки результатов анализа. Как правило, в инструментальных методах применяют сенсоры (датчики). Инструментальных методов очень много, мы рассмотрим только некоторые из них.
Электрохимические методы: потенциометрический, полярографический, кондуктометрический и др.
Потенциометрический метод основан на измерении электродных потенциалов, которые зависят от активности ионов, а в разбавленных растворах – от их концентрации. В основе лежит уравнение Нернста:

Кондуктометрический метод основан на измерении электрической проводимости разбавленных растворов, которая пропорциональна концентрации электролитов. Этим методам, например, определяют общее содержание примесей в воде высокой чистоты.
Хроматографический анализ позволяет разделять двух- и многокомпонентные смеси газов, жидкостей и растворенных веществ методом сорбции в динамических условиях. Основной прибор – хроматограф. Разработано несколько методов, которые классифицируют по механизму процесса и природе частиц – молекулярная, ионообменная, осадительная, распределительная хроматография; и по формам применения – колоночная, капиллярная, тонкослойная и бумажная. Молекулярная хроматография основана на различной адсорбируемости молекул на сорбентах (адсорбентах), ионообменная – на различной способности к обмену ионов раствора. В осадительной хроматографии используют различную растворимость осадков, а в распределительной – различное распределение веществ между двумя несмешивающимися жидкостями. К достоинствам метода следует отнести быстроту и надёжность, возможность определения нескольких компонентов смеси из раствора.
Оптические методы анализа основаны на измерении оптических свойств веществ и излучений, взаимодействии электромагнитного излучения с атомами или молекулами анализируемого вещества, вызывающего излучение, поглощение или отражение лучей. Они включают в себя эмиссионные, люминесцентные и абсорбционные спектральные методы.
Методы, основанные на изучении спектров излучения, называют эмиссионными спектральными методами. В эмиссионной спектроскопии проба вещества нагревается до очень высоких температур (2000-15000 оС). Вещество, испаряясь, диссоциирует на атомы или ионы, которые дают излучение. В спектрографе излучение разлагается на спектр цветных линий. Сравнение этого спектра со справочными данными позволяет определить вид элемента, а интенсивность спектральных линий – его количество. Преимущества этого метода: быстрота выполнения анализа, возможность определения нескольких компонентов из одной навески.
Разновидность эмиссионного анализа – эмиссионная пламенная фотометрия, в которой исследуемый раствор вводят в бесцветное пламя горелки. По изменению цвета пламени определяют вид вещества, а по интенсивности окраски – о его концентрации. Метод выполняют с помощью пламенного фотометра и используют для анализа щелочных, щелочноземельных металлов и магния.
Методы, основанные на свечении анализируемого вещества ультрафиолетовых (фотолюминесценция), рентгеновских (рентгенолюминесценция) и радиоактивных (радиолюминесценция) лучей называют люминесцентными. Люминесцентные методы обладают очень высокой чувствительностью (до 10-10-10-13 г люминесцирующих примесей).
Методы, основанные на изучении спектров поглощения лучей анализируемыми веществами, называют абсорбционно-спектральными. При прохождении света через раствор свет или его компоненты поглощаются или отражаются. По величине поглощения или отражения лучей судят о природе и концентрации вещества. Определение ведут с помощью спектрофотометров или фотоколориметров. Если измеряют поглощение лучей атомами определяемого компонента, которые получают распылением раствора анализируемого вещества в пламени горелки, то метод называют атомно-абсорбционным. Оптический метод, основанный на отражении света твёрдыми частицами, взвешенными в растворе, называется нефелометрией, а прибор, используемый в нём – нефелометром.
Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями позволило создать большое число инструментальных методов анализа, характеризуемых высокой точностью, чувствительностью, быстротой и надёжностью определения, возможностью анализа многокомпонентных систем.
Заключение
Вопросы, рассмотренные в курсе лекций, позволяют получить современное научное представление о материи, формах ее движения, веществе как одном из видов материи, механизме превращения химических соединений, свойствах технических материалов и применении химических процессов в современной технике. Понимание химических законов помогает инженеру в решении технических проблем. Знание химии необходимо для последующего успешного изучения общенаучных и специальных дисциплин, таких, как сопротивление материалов, материаловедение, основы теплопередачи, электротехника, электроника, энергетика, а также ряда дисциплин, связанных с железнодорожным транспортом.
Знание химии полезно будущему инженеру, так как он будет постоянно сталкиваться с различными веществами и процессами. Научно-технический прогресс вызывает к жизни все новые материалы, новые машины, аппараты и приборы, в которых широко используются достижения химии.
Конспект курса лекций будет полезен при изучении, а также повторении материала в период подготовки к экзамену.
Литература
- Коровин Н.В. Общая химия. – М.: Высшая шк., 2000.
- Зубрев Н.И. Инженерная химия на ж/д транспорте. – М.: 1999
- Жук Н.П. Курс теории коррозии и защиты металлов. – М.:2002
- Глинка Н.Л. Задачи и упражнения по общей химии. – М.:1998
- Глинка Н.Л. Общая химия. – М.: Интеграл-пресс, 2003.