Конспект лекций по географии для студентов 1 курса экологического факультета Макарова М. Г., к г. н., доцент кафедры геоэкологии экологического факультета 1
Вид материала | Конспект |
- Учебное пособие а. Л. Корнеев корнеев Александр Леонидович кандидат юридических наук,, 2943.34kb.
- Конспект лекций по курсу "Информатика и использование компьютерных технологий в образовании", 1797.24kb.
- Геоэкология родниковых вод сергиево-посадского района московской области, 410.89kb.
- Составитель – доцент кафедры географии и геоэкологии БелГУ, к г. н. Шерстюков, 94.15kb.
- Рабочая учебная программа дисциплины «Согласовано» Декан юридического факультета, 549.82kb.
- Конспект лекций по курсу макроэкономика для студентов заочников факультета бухгалтерского, 2421.87kb.
- Щербицкий Евгений Павлович в 1965 г окончил кгпи. Доцент кафедры экономической географии., 1629.92kb.
- Макарова Т. И, 446.02kb.
- Календарно- тематический план лекций кафедры терапевтической стоматологии рниму им., 54.75kb.
- Бакалаврская программа № Кафедра региональной экономики и географии экономического, 143.68kb.
Лекция 2.Космические и планетарные факторы, влияющие на географическую оболочку.
Содержание лекции.
1.Строение Солнца и солнечное излучение
2. Солнечная активность.
3. Влияние солнечной активности на Землю
4. Электромагнитное излучение Солнца.
1. Строение Солнца и солнечное излучение
Излучение Солнца является источником энергии для всех процессов, протекающих в географической оболочке.
70% массы Солнца составляет водород. 29%– гелий, 1% приходится на другие элементы. Средняя плотность вещества Солнца составляет 1.41 г/см3, внутри же эта величина достигает 100 г/см3. (Для Земли эти величины составляют соответственно 5.52 г/см3 и 13 г/см3.) Диаметр Солнца составляет 1.39 млн. км (диаметр Земли— 12756 км).
В Солнце выделяют несколько областей, в пределах которых вещество отличается по своим свойствам и механизмам распространения энергии
Ядро Солнца является источником энергии. В нем при температурах, составляющих 15 млн. 0К, идет термоядерная реакция перехода водорода в гелий (4Н - Не).
Зона лучистой передачи энергии, в которой энергия от ядра распространяется путем поглощения и излучения веществом порций света - квантов.
Зона конвективного переноса энергии - конвективная зона. В этой зоне потоки горячего газа поднимаются к поверхности, а охлажденный солнечный газ опускается вниз. Скорость подъема горячих масс вверх и опускания холодных вниз составляет 1 2 км/сек.
Солнечная атмосфера состоит из трех последовательных слоев.
Фотосфера - самый нижний (толщиной 100 300 км) слой, он определяет видимый диск Солнца. Фотосфера состоит из светлых зернышек (гранул) и темных промежутков между ними. Размеры гранул невелики -1000-2000 км в поперечнике. Межгранульные пространства более узкие - 300-600 км. Картина грануляции непостоянная, каждая гранула живет не более 10 мин. Разность температур между ними в наружных слоях фотосферы сравнительно невелика 200-3000К, Грануляция создает общий фон, на котором наблюдаются более контрастные и крупные объекты - пятна и факелы. Пятна возникают в результате нарушения конвективных потоков на участках концентрации магнитного поля. Пятна могут быть окружены более яркими участками - факелами. Фотосфера состоит из сильно ионизированного газа с концентрацией частиц порядка 1016 1017 в 1 см3, (плотность газов в фотосфере такая же, как у стратосферы Земли) и находящегося под давлением 100 мб.
Температура колеблется от 80000К на глубине до 40000К у поверхности. Температура же того среднего слоя, излучение которого мы воспринимаем составляет 60000К. При таких условиях все молекулы газов распадаются на атомы, лишь в самых верхних частях фотосферы сохраняется относительно немного простейших молекул и радикалов типа Н2, ОН, СН.
Хромосфера (сфера цвета) простирается до высот 10000 15000 км слой. Температура в хромосфере растет. Давление и плотность вещества в хромосфере продолжают падать. Плотность у верхней границы хромосферы составляет 10-15 г/см3. В хромосфере наблюдаются сильные вспышки, которые являются источником интенсивного ультрафиолетового и рентгеновского излучения, радиоволн и корпускулярных потоков. В верхней части хромосферы образуются протуберанцы.
Солнечная корона - самая внешняя оболочка Солнца, простирается до высот, составляющих несколько радиусов Солнца. Общий вид солнечной короны меняется с 11 летним циклом солнечной активности. При этом изменяются яркость и форма короны. Вещество солнечной короны представляет собой почти полностью ионизированный газ — плазму, состоящую из положительно заряженных ионов и свободных электронов (в 1 см3 у основания короны заключено 3*107 частиц). С высотой в короне продолжается рост температуры до тех пор, пока энергия теплового движения частиц не превысит потенциальную энергию, удерживающего их гравитационного поля Солнца, после чего начинается истечение солнечной плазмы в окружающее межзвездное пространство.
От Солнца в разные стороны двигаются непрерывно потоки заряженных частиц со сверхзвуковыми скоростями. По предложению эти потоки получили название солнечного ветра (теория Ю. Паркера). При спокойном ветре у орбиты Земли в 1 см3 имеется всего 1 2 частицы, перемещающиеся со скоростью 300 400 км/сек в направлении точно от Солнца. Порывы этого ветра, когда скорость возрастала до 800 км/сек, а концентрация— до 100 частиц на см3.
Состав солнечной плазмы - протоны составляют 91.3%, однократно ионизированные атомы гелия— 0.1%, частицы (дважды ионизированные атомы гелия)— 8.6%, возможно тяжелые ионы (кислород в высоких стадиях ионизации). Плазма состоит как из положительно, так и отрицательно заряженных частиц è в целом она нейтральна. Поток энергии, который приносит солнечный ветер к Земле, составляет 0.64 эрг/сек*см3, а во время порывов— максимум 100 эрг/cм3*сек.
Солнечный ветер простирается до орбит Юпитера и Сатурна, образуя гелиосферу.
Основные понятия: ядро Солнца, зона лучистой передачи энергии, зона конвективного переноса энергии - конвективная зона, солнечная атмосфера, фотосфера, хромосфера (сфера цвета), солнечная корона, солнечный ветер, гелиосфера
2.Солнечная активность.
Солнечной активностью называется комплекс нестационарных явлений в солнечной атмосфере:
- солнечные пятна - относительно холодные образования в фотосфере неправильной тарелкообразной формы с очень сильными магнитными полями, напряженность которых может достигать нескольких тысяч эрстед.
- факелы и хромосферные вспышки сопровождают появление пятен. Плотность вещества в местах вспышки значительно превышает плотность в окружающих областях хромосферы. Во время вспышки возрастает также интенсивность рентгеновского и радиоволнового излучений, отдельных участков ультрафиолетового и видимого спектров
- пятна являются источниками корпускулярных потоков, более сильных, чем солнечный ветер
Полная энергия, выделяемая при сильной вспышке в виде различного рода излучений, составляет 1031 1032 эрг.
Основным показателем солнечной активности является число пятен и их групп (число Вольфа), индекс, предложенный швейцарским астрономом Рудольфом Вольфом. W=k(f+10g),
где f -сумма общего количества пятен, g - число групп пятен, k - коэффициент пропорциональности.
Изменения количества солнечных пятен имеет 11 – летнюю ритмичность
Колебание с периодом в 11 лет свойственно другим проявлением солнечной активности (11 летний цикл солнечной активности).
Установлены 22 –летний (магнитного) и 80 90 летний циклы солнечной активности.
Основные понятия: солнечная активность, число Вольфа, 11 –летний, 22 –летний, 80 90- летний циклы солнечной активности.
3. Влияние солнечной активности на Землю
Солнечная активность вызывает целый ряд явлений и процессов как в абиотической, так и биотической составляющих биосферы Земли.
Увеличение интенсивности рентгеновского излучения в диапазоне 30-10х10-3 мкм в 2 раза, в диапазоне 10-1х10-3 мкм – в 3-5 раз, в диапазоне 1-0,2х10-3 мкм более чем в 100 раз. Жесткое рентгеновское излучение с длиной волны меньше 0,2х10-3 мкм появляется в спектре Солнца всего лишь на короткое время после вспышек.
Ионизация земной атмосферы в высоких широтах, колебания ее прозрачности в ультрафиолетовом и инфракрасном диапазонах, изменения условий распространения коротких волн.
Из-за усиления солнечного ветра происходит сжатие магнитосферы Земли с солнечной стороны, усиление токов на ее внешней границе, частичное проникновению частиц солнечного ветра вглубь магнитосферы и пополнение частицами высоких энергий радиационных поясов Земли. Эти процессы сопровождаются
- колебаниями напряженности геомагнитного поля (магнитной бурей),
- полярными сияниями и другими геофизическими явлениями, отражающими общее возмущение магнитного поля Земли.
Возмущения в магнитосфере и верхней атмосфере Земли из-за вращения Солнца вокруг своей оси повторяются через 27 суток.
Во время максимумов солнечной активности нагревается и расширяется термосфера. На высоте нескольких сот километров плотность воздуха может увеличиваться в 50 раз.
Солнечная активность влияет и на количество ясных дней в году, на траектории тайфунов и ураганов.
Силы притяжения Солнца и Луны вызывают в атмосфере приливы. Атмосферные приливы вызывают изменения давления воздуха. Скорость приливных ветров составляет около 0,3 км/час. Приливные воздушные течения усиливаются с высотой, что вызывает в нижней части ионосферы перемещения ионизированного газа вертикально в магнитном поле Земли и приводит к возникновению электрических токов.
11-летний цикл солнечной активности прослеживается в явлениях органической природы. Это изменение скорости роста деревьев с периодом в 11 лет, установленный по чередованиям толщины годовых колец, изменения урожайности сельскохозяйственных культур, периодичность возникновения эпидемий.
Основные понятия: увеличение интенсивности рентгеновского излучения, ионизация земной атмосферы в высоких широтах, сжатие магнитосферы Земли, возмущения в магнитосфере, атмосферные приливы.
4.Электромагнитное излучение Солнца.
Спектр электромагнитного излучения Солнца (спектр Солнца) – это распределение лучистой энергии Солнца по длинам волн. Длины волн (измеряются в микрометрах (1 мкм = 10-6 м).
Спектр Солнца включает электромагнитные колебания с длинами волн от гамма излучения до радиоволн. Но основная часть солнечного спектра лежит в ультрафиолетовом, видимом и инфракрасном диапазонах. На верхней границе атмосферы на ультрафиолетовую радиацию приходится около 9% всей излучаемой энергии, на видимую - 47%, на инфракрасную – 44%.
Распределение энергии в спектре Солнца. Излучательная способность— энергетическая светимость (величина потока излучения, испускаемого единицей поверхности тела по всем направлениям) пропорциональна абсолютной температуре тела (закон Стефана Больцмана)
e=sТ4
где s— постоянная Стефана— Больцмана.
С увеличением температуры максимум излучательной способности данного тела смещается в более коротковолновую область спектра (закон Вина):
Распределение энергии в спектре Солнца напоминает распределение энергии в спектре излучения абсолютно черного тела с температурой 6000°К
Электромагнитное излучение Солнца в геофизике называют солнечной радиацией, а величину потока солнечной радиации, падающего на перпендикулярную солнечным лучам площадку в 1 м2, называют солнечной постоянной. Она выражается в Вт на м2 и составляет (по измерениям с ракет за период 1976-1981 гг) 1367 Вт/м2. Величина солнечной постоянной, вероятно, зависит от солнечной активности, но ее изменения не превосходят точности современных измерений (ошибка примерно 0,3%).
Видимое и ближнее ИК излучение, приходящее от фотосферы, характеризуется постоянством во времени и чрезвычайно большой интенсивностью.
Для процессов на Земле очень большое значение имеет тот факт, что большая часть наиболее интенсивного излучения Солнца приходится на область оптического окна. В этом интервале длин волн Солнце излучает свыше 95% всей энергии. Именно поэтому значительная часть солнечного излучения достигает поверхности Земли и обеспечивает энергией все процессы в географической оболочке.
Основные понятия: спектр электромагнитного излучения Солнца (спектр Солнца), энергетическая светимость, солнечная постоянная, диапазоны солнечной радиации: ультрафиолетовый, видимый, инфракрасный.