Мичио каку параллельные миры «сосриЯ» 2 0 0 8 Об устройстве мироздания, высших измерениях и булушем Космоса
Вид материала | Документы |
СодержаниеБольшой адронный коллайдер I Большой адронный коллайдер представляет собой мощную кон-струкцию Прим. перев.) Настольные ускорители частиц Часть iii |
- Мичио каку параллельные миры «софия» 2 0 0 8 Об устройстве мироздания, высших измерениях, 5404.28kb.
- Michio kaku parallel worlds, 5399.45kb.
- Параллельные миры, 862.52kb.
- Первая. Появление богини среди людей глава вторая, 5073.31kb.
- Питейная субстанция, 184.42kb.
- Строение мироздания , 814.95kb.
- «Удивительное путешествие в параллельные миры», 20.4kb.
- С. Э. Воронин Тайны мироздания в современной науке и религии, 1366.15kb.
- Параллельные миры, 127.57kb.
- «Химия космоса», 282.27kb.
стояниях до 108 миллионных долей метра, физики не обнаружили
такого отклонения. «Пока Ньютон еще держит свои позиции», —
сказал Д. Хойл из Университета Тренто в Италии, который проводил
анализ данного эксперимента для журнала «Нэйчер» (Nature).
Итак, полученный результат оказался отрицательным, но он лишь
раздразнил аппетит других физиков, которые хотят проверить закон
[Ньютона на предмет отклонения при расстояниях микроскопиче-
ского масштаба.
ПроведениеещеодногоэкспериментапланируетсявУниверситете
Пердью. Там физики хотят измерить крошечные отклонения от зако-
на Ньютона не на миллиметровом уровне, а в масштабах атома. Они
[рассчитывают провести такой эксперимент, используя нанотехно-
1логию для измерения разницы между никелем-58 и никелем-64. Эти
даа изотопа обладают одинаковыми электрическими и химическими
!свойствами, но у одного изотопа на 6 нейтронов больше, чем у вто-
рого. В принципе, единственное, в чем различны эти изотопы, — это
их вес.
} Ученые планируют создать устройство Казимира, состоящее из
f двух наборов пластинок с нейтральным зарядом, сделанных из этих
ji двух изотопов. Обычно, когда эти пластинки располагают близко
\ друг к другу, ничего не происходит, поскольку они не имеют заряда.
Но если их расположить чрезвычайно близко друг к другу, то имеет
место эффект Казимира: пластинки слегка притягиваются друг к дру-
гу; этот эффект был измерен в лаборатории. Но поскольку наборы
параллельных пластинок сделаны из двух различных изотопов, они
будут притягиваться друг к Другу с несколько различной силой.
Для того чтобы максимально увеличить эффект Казимира, пла-
I стинки должны располагаться очень близко друг к Другу. (Этот
; эффект обратно пропорционален четвертой степени расстояния.
I Отсюда следует, что сила эффекта стремительно увеличивается при
J сближении пластинок.) Физики Университета Пердью воспользуют-
!'Ся нанотехнологией для того, чтобы расстояние между пластинками
'i
было сравнимо с размерами атома. Ученые используют новейшие
микроэлектромеханические торсионные генераторы для измере-
ния крошечных колебаний пластинок. Тогда любое различие между
пластинками из никеля-58 и никеля-64 можно приписать действию
гравитации. Таким образом, ученые надеются измерить отклонения
от законов механики Ньютона на уровне атомарных расстояний.
Если при помощи этого гениального устройства им удастся обна-
ружить отклонения от знаменитого закона обратных квадратов, это
может сигнализировать о присутствии вселенной, существующей в
дополнительных, более высоких измерениях, которая находится на
расстоянии атома от нашей вселенной.
Большой адронный коллайдер
И все же устройством, которое окончательно решит многие из
упомянутых вопросов, является Большой адронный коллайдер,
строительство которого близится к завершению возле Женевы
в Швейцарии в знаменитой ядерной лаборатории ЦЕРН (Евро-
пейской организации по ядерным исследованиям). В отличие от
предыдущих экспериментов по обнаружению незнакомых форм
вещества, в естественном виде существующего в мире, Большой
адронный коллайдер, возможно, будет обладать достаточной энер-
гией, чтобы создать эти формы вещества прямо в лаборатории. При
помощи Большого адронного коллайдера можно будет исследовать
малые расстояния до 10~19 м, что в 10000 раз меньше протона, а
также создавать температуры, невиданные со времен Большого
Взрыва. «Физики уверены, что у природы припасены новые фокусы,
которые могут обнаружиться в ходе этих столкновений, — возмож-
но, это будет экзотическая частица, известная под названием бозон
Хиггса, возможно, доказательство такого чудесного явления, как
суперсимметрия, а возможно, обнаружится что-либо неожиданное
и поставит с ног на голову всю физику», — пишет Крис Ллевеллин
Смит, бывший генеральный директор ЦЕРН, а теперь президент
Университетского колледжа в Лондоне. Уже сейчас оборудованием
ЦЕРН пользуются около 7 тысяч специалистов, что составляет
более половины всех физиков планеты, экспериментирующих с ча-
стицами. И многие из них будут самым непосредственным образом
Властвовать в экспериментах, проводимых при помощи Большого
кронного коллайдера.
I Большой адронный коллайдер представляет собой мощную кон-
струкцию в виде кольца диаметром 27 километров. Размеры этого
кольца достаточно велики, чтобы окружить многие города мира.
Туннель коллайдера настолько длинен, что он фактически пересе-
кает границу между Францией и Швейцарией. Большой адронный
[коллайдер представляет собой настолько дорогостоящее устрой-
ство, что для его строительства потребовались совместные усилия
нескольких европейских стран. После запуска коллайдера в 2007 го-
>ду мощные магниты, расположенные вдоль всего кругового туннеля,
заставят пучок протонов циркулировать со все возрастающими
[энергиями, до тех пор, пока они не приблизятся к 14 триллионам
электронвольт.
По мере прохождения частиц по кругу в туннель подается энер-
гия, увеличивая скорость протонов. Когда пучок в конце концов по-
падает в цель, происходит колоссальный выброс излучения. Следы,
образовавшиеся в результате этого столкновения, фотографируют
при помощи группы детекторов с целью обнаружения новых экзоти-
ческих субатомных частиц.
Большой адронный коллайдер — это поистине гигантское
устройство. В то время как детекторы LIGO и LISA бьют все рекорды
В плане чувствительности, Большой адронный коллайдер уникален
уже благодаря своей колоссальной мощности. Его мощные магниты,
искривляющие пучок протонов в изящную дугу, генерируют поле в
8,3 теслы, которое в 160 ООО раз сильнее магнитного поля Земли. Для
создания такого чудовищного по силе поля физики пропускают ток
силой в 12000 ампер по ряду витков, охлажденных до температуры
в -271°С, при которой витки теряют сопротивление и становятся
сверхпроводниками. В целом на Большом адронном коллайдере уста-
новлено 1232 магнита, каждый из которых имеет 15 метров в длину.
Таким образом, магниты расположены вдоль 85 % всей окружности
коллайдера.
В туннеле протоны к моменту удара по цели ускоряются до скоро-
сти, равной 99,999999 % скорости света. Цели находятся в четырех
местах по всей длине туннеля. Таким образом, каждую секунду про-
исходят миллиарды столкновений. Там же расположены гигантские
детекторы (каждый из которых размером с семиэтажный дом), за-
дачей которых является анализ следов столкновения и обнаружение
неуловимых субатомных частиц.
Как было ранее замечено Смитом, в задачи Большого адронного
коллайдера входит обнаружение неуловимого бозона Хиггса, пред-
ставляющего собой последний элемент Стандартной модели, кото-
рый до сих пор не удавалось обнаружить. Эта задача имеет большое
значение, поскольку эта частица отвечает за спонтанное нарушение
симметрии в теориях частиц и дает начало массам квантового мира.
По предварительным оценкам, масса бозона Хиггса может быть
115-200 миллиардов электронвольт (для сравнения, масса протона
около 1 миллиарда электронвольт). (Теватрон, устройство гораздо
меньших размеров, размещенное в лаборатории Ферми на окраине
Чикаго, станет, возможно, первым ускорителем, при помощи кото-
рого удастся заполучить неуловимый бозон Хиггса, при условии,
что масса этой частицы не слишком велика. В принципе, Теватрон
может произвести до 10 ООО бозонов Хиггса, если все будет идти, как
запланировано. Однако энергия генерирования частиц Большого
адронного коллайдера будет в семь раз больше. При 14 триллионах
электронвольт Большой адронный коллайдер вполне сможет стать
«фабрикой» бозонов Хиггса, миллионы которых будут создаваться
при столкновениях протонов.)
В задачи Большого адронного коллайдера входит также создание
условий, невиданных со времен самого Большого Взрыва. В част-
ности, физики полагают, что изначально Большой Взрыв состоял из
хаотичного скопления чрезвычайно горячих кварков и глюонов, на-
зываемого кварк-глюонной плазмой. Большой адронный коллайдер
сможет произвести такую кварк-глюонную плазму, которая преоб-
ладала во вселенной в первые десять микросекунд ее существования.
В Большом адронном коллайдере можно будет столкнуть ядра свин-
ца при энергии в 1,1 триллиона электронвольт. В ходе такого мощно-
го столкновения могут «расплавиться» четыре сотни протонов и
нейтронов, которые высвободят кварки в эту горячую плазму. Таким
образом, космология постепенно сможет стать в меньшей степени
наукой, основанной на астрономических наблюдениях, и точные
эксперименты на кварк-глюонной плазме будут ставиться прямо в
лабораториях.
j» Можно надеяться, что при помощи Большого адронного кол-
лайдера удастся обнаружить черные мини-дыры среди остатков,
образовавшихся в результате столкновения протонов при фантасти-
чески высоких энергиях, как уже было упомянуто в главе 7. Обычно
[образование квантовых черных дыр должно происходить при энер-
!гии Планка, что в квадриллион раз превышает энергию Большого
адронного коллайдера. Но если в миллиметре от нашей вселенной
I существует параллельная вселенная, то энергия, при которой воз-
можно измерение квантовых гравитационных эффектов, снижается,
(благодаря чему создание черных мини-дыр оказывается в пределах
| возможностей Большого адронного коллайдера.
\ И наконец, ученые возлагают надежды на то, что при помощи
| Большого адронного коллайдера удастся найти подтверждение
; суперсимметрии, что стало бы историческим прорывом в физике
\ частиц. Считается, что эти счастицы являются партнерами обычных
1 частиц, которые мы можем наблюдать в природе. Хотя струнная Te-
l: ория и суперсимметрия и предсказывают, что у каждой субатомной
: частицы есть «близнец» с отличающимся спином, суперсимметрия
никогда не наблюдалась в природе, — вероятно, потому, что наши
приборы не обладают достаточной мощностью для ее обнаружения.
Подтверждение существования суперчастиц помогло бы дать
ответ на два наболевших вопроса. Во-первых, верна ли струнная
теория? Несмотря на то что обнаружить струны прямым путем чрез-
вычайно сложно, может оказаться возможным обнаружить нижние
октавы или резонансы струнной теории. Если будут открыты счасти-
цы, то это станет большим сдвигом в струнной теории, обеспечивая
ее экспериментальное подтверждение (хотя все же это не будет пря-
мым доказательством ее истинности).
Во-вторых, это предоставило бы наиболее вероятного претен-
дента на роль темного вещества. Если темное вещество состоит из
субатомных частиц, то они должны обладать стабильностью и ней-
тральным зарядом (иначе они были бы видимы), а также между ними
должно быть гравитационное взаимодействие. Все эти три качества
являются характерными для частиц, которые предсказывает струн-
ная теория.
• Когда будет запущен Большой адронный коллайдер, он станет
самым мощным ускорителем частиц. И все же для большинства физи-
ков это не предел мечтаний. В 1980-е годы президент Рональд Рейган
одобрил проект постройки Сверхпроводящего суперколлайдера
(SSC), гигантской конструкции, достигающей 80 км в окружности.
Строительство этого ускорителя частиц планировалось произвести
возле Далласа (штат Техас). По сравнению с Суперколлайдером
Большой адронный коллайдер показался бы просто крошкой. В то
время как Большой адронный коллайдер позволяет сталкивать
частицы с энергией в 14 триллионов электронвольт, по проекту
Суперколлайдер должен обеспечить столкновения частиц с энерги-
ей в 40 триллионов электронвольт. Первоначально проект получил
одобрение, но в последние дни слушаний Конгресс Соединенных
Штатов внезапно отклонил его. Это стало тяжелым ударом по фи-
зике высоких энергий и задержало развитие этой области на целое
поколение.
Поначалу предметом спора являлись стоимость проекта, состав-
ляющая 11 миллиардов долларов, и научные приоритеты. Мнения
представителей научного сообщества по поводу Сверхпроводящего
суперколлайдера разделились: некоторые физики заявляли, что про-
ект выкачает средства, которые могли бы пойти на их собственные
исследования. Спор разгорелся настолько, что даже «Нью-Йорк
тайме» опубликовала критическую редакционную статью, где гово-
рилось об опасностях «большой науки», которая может задушить
«малую науку». (Эти аргументы беспочвенны, поскольку средства
на строительство Сверхпроводящего суперколлайдера должны были
поступать из других источников, а не из бюджета «малой науки».
Реальным соперником проекта была космическая станция, которая
многими учеными рассматривалась поистине как пустая трата де-
нег.)
Но оглядываясь назад, можно сказать, что суть спора сводилась к
умению говорить с широкой общественностью на доступном языке.
В некотором смысле, мир физики привык к тому, что строительство
чудовищных ускорителей частиц получало одобрение со стороны
Конгресса, поскольку русские строили свои ускорители. В сущности,
русские строили свой ускоритель УНК (Ускорительно-накопитель-
ное кольцо. — Прим. перев.), соревнуясь со Сверхпроводящим супер-
коллайдером. На карту были поставлены честь и престиж нации. Но
Советский Союз развалился7\ строительство было остановлено, и
шостепенно ветер перестал надувать паруса программы постройки
Сверхпроводящего суперколлайдера.
Настольные ускорители частиц
С появлением Большого адронного коллайдера физики постепенно
приближаются к верхнему пределу энергии, которую можно по-
лучить при помощи современного поколения ускорителей частиц.
Стоимость этих ускорителей исчисляется в десятках миллиардов
долларов, а по размеру они превосходят многие большие современ-
ные города. Они настолько грандиозны, что их строительство воз-
можно лишь при совместной деятельности нескольких государств.
Если мы хотим преодолеть барьер, ограничивающий возможности
традиционных ускорителей, то нам необходимы принципиально
новые идеи и подходы. Святой Грааль для физиков, занимающихся
частицами, — это создание «настольного» ускорителя частиц, ко-
торый сможет создать пучки с энергией в миллиарды электронвольт,
существенно экономя на размерах и стоимости по сравнению с тра-
диционными ускорителями.
Чтобы понять, в чем заключается проблема, представьте себе эста-
фету, участники которой расставлены по кругу вдоль длинной бего-
вой дорожки. Соревнуясь в беге, участники передают друг другу па-
лочку. Теперь представьте, что каждый раз, когда палочка переходит
от одного бегуна к другому, участникам сообщается дополнительная
энергия, то есть они начинают бежать все быстрее и быстрее.
Нечто похожее наблюдается в ускорителе частиц, где роль палоч-
ки выполняет пучок субатомных частиц, которые двигаются по кругу.
Каждый раз, когда пучок переходит от одного участника к другому, в
пучок инжектируется высокочастотная энергия, все больше и боль-
ше разгоняя его. По такому принципу строились ускорители частиц
на протяжении последних пятидесяти лет. Проблема традиционных
ускорителей частиц состоит в том, что мы подходим к пределу высо-
кочастотной энергии, которую можно использовать для приведения
ускорителя частиц в действие.
Для решения этой досадной проблемы ученые экспериментиру-
ют с кардинально новыми способами закачки энергии в пучок, на-
пример ''пользованием мощныхлазерныхлучей, мощность которых
экспоненциально растет. Одним из преимуществ лазерного света
является его «когерентность», то есть все световые волны вибриру-
ют точно в унисон, благодаря чему возможно создание невероятно
мощных лучей. Сегодня лазерные лучи могут генерировать мощный
энергетический импульс в триллионы ватт (тераватты) мощности за
короткий промежуток времени. (Для сравнения, атомная электро-
станция способна генерировать какой-то несчастный миллиард
ватт мощности, но она стабильна). В настоящее время становится
возможным использование лазеров, которые могут генерировать до
тысячи триллионов ватт (квадриллион ватт, или петаватт).
Лазерные ускорители частиц работают по следующему принци-
пу. Лазерный свет достаточно горяч, чтобы создать газ из плазмы
(скопления ионизированных атомов), который затем движется с
волнообразными колебаниями на высоких скоростях, подобно при-
ливной волне. Затем пучок субатомных частиц ловит эту попутную
волну плазмы. При инжектировании большего количества лазерной
энергии движение волны плазмы ускоряется, сообщая дополни-
тельную энергию пучку частиц на этой волне. Недавно ученым из
Лаборатории Резерфорда-Эпплтона в Англии удалось, направив
лазер в 50 тераватт в твердую цель, произвести пучок протонов,
несущий до 400 миллионов электронвольт (МэВ) энергии в колли-
мированном пучке. Физики из Парижской политехнической школы
разогнали электроны до 200 МэВ на расстоянии в один миллиметр.
Созданные на данный момент лазерные ускорители частиц от-
личаются малыми размерами и небольшой мощностью. Но пред-
ставим на секунду, что масштабы такого ускорителя частиц можно
увеличить таким образом, чтобы он работал на расстоянии не мил-
лиметра, а целого метра. Тогда он мог бы разогнать электроны до
200 ГэВ на расстоянии одного метра; тем самым была бы достигнута
цель создания настольного ускорителя частиц. Еще одним важным
этапом стало ускорение электронов на расстоянии 1,4 метра фи-
зиками из Стэнфордского центра линейного ускорителя (SLAC)
в 2001 году. Вместо лазерного луча они создали плазменную волну
путем инжектирования пучка заряженных частиц. Хотя полученная
ими энергия была достаточно низкой, этот опыт продемонстриро-
вал, что плазменные волны могут ускорять частицы на расстоянии
метра.
? Темпы исследований в этой перспективной области очень высо-
ки: энергия, достигаемая при помощи этих ускорителей, возрастает
в 10 раз каждые пять лет. При таком развитии событий уже не за го-
рами создание прототипа настольного ускорителя частиц. Если это
предприятие окажется успешным, то Большой адронный коллайдер
будет смотреться как последний динозавр. Какой бы перспективной
ни казалась эта затея, на пути ее реализации стоит множество пре-
град. Подобно серфингисту, которому сложно не упасть, катаясь на
предательской волне, очень сложно поддержать пучок так, чтобы
он должным образом «ехал» на плазменной волне (в число про-
блем входит фокусировка пучка и поддержание его стабильности и
интенсивности). Однако ни одна из этих проблем не представляется
непреодолимой.
Будущее
Есть несколько задумок для доказательства струнной теории. Эдвард
Виттен выражает надежду на то, что в момент Большого Взрыва
вселенная расширялась столь стремительно, что, возможно, вместе
с ней растянулась и струна, в результате чего в космосе образовалась
струна астрономических размеров. Он размышляет: «Несмотря на
то что это звучит несколько нереально, это мой любимый сценарий
доказательства струнной теории, поскольку ничто не решит вопрос
настолько радикально, как наблюдение струны в телескоп».
Брайан Грин перечисляет пять вероятных примеров эксперимен-
тальных данных, которые могли бы подтвердить струнную теорию
или, по крайней мере, придать ей правдоподобие:
- Крошечная масса неуловимого призрачного нейтралино мо-
жет быть определена экспериментальным путем, и струнная
теория могла бы объяснить ее.
- Могут быть обнаружены незначительные нарушения Стан-
дартной модели, которые противоречат физике точечных ча-
стиц, — такие, как распад определенных субатомных частиц.
- Экспериментальным путем могут быть обнаружены новые
силы дальнего действия (помимо гравитации и электромагне-
тизма), которые будут сигналом в пользу выбора определенно-
; го многообразия Калаби-Яу.
- В лаборатории могут быть обнаружены частицы темного ве-
щества. Их можно будет сопоставить с прогнозами струнной
теории.
- Струнная теория могла бы вычислить количество темного
вещества во вселенной.
Моя собственная точка зрения состоит в том, что верификация
струнной теории может осуществиться скорее благодаря чистейшей
математике, нежели экспериментальным путем. Поскольку предпо-
лагается, что струнная теория — это теория всего, она должна быть
также теорией повседневных энергий, равно как и космических.
Таким образом, если мы в конце концов найдем решение этой тео-
рии, то, вероятно, сможем вычислить свойства обычных объектов, а
не только экзотических, которые обнаруживаются в открытом кос-
мосе. Для примера, если струнная теория сможет вычислить массы
протона, нейтрона и электрона исходя из первых принципов1, то это
стало бы достижением первой величины. Во всех физических моде-
лях (за исключением струнной теории) массы этих известных частиц
подставляются вручную. В некотором смысле, нам не нужен Большой
адронный коллайдер для подтверждения этой теории, поскольку мы
уже знаем массы огромного количества субатомных частиц, и все они
должны быть определены струнной теорией без всяких настраивае-
мых параметров.
Как сказал Эйнштейн: «Я убежден, что посредством чисто мате-
матических построений мы можем определить концепции и законы...
которые дадут нам ключ к пониманию естественных явлений. Опыт
может подсказать нам нужные математические концепции, но они не
могут быть выведены из него... Таким образом, в некотором смысле,
я верю в то, что чистая мысль может охватить реальность, о чем меч-
тали древние».
Если М-теория (или любая другая теория, которая в конечном
счете приведет нас к квантовой теории гравитации) окажется вер-
ной, то она сделает возможным последнее путешествие для всей ра-
зумной жизни во вселенной, побег из нашей умирающей вселенной
в новый дом через триллионы и триллионы лет.
ЧАСТЬ III
ПОБЕГ
В ГИПЕРПРОСТРАНСТВО