Жизнь человека с самого начала складывалась так, что все, чем бы он не занимался, заставляло его наблюдать за окружающим миром и делать из этого выводы

Вид материалаДокументы

Содержание


100 Великих научных открытий
Закон простых объемных отношений
100 Великих научных открытий
Закон эрстеда
100 Великих научных открытий
Основы мироздания
100 Великих научных открытий
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   50

В 1777 году Вольта назначается профессором физики в Павий. В восьмидесятых годах изобретает пламенный зонд. За изобретение столба он получил награду от Наполеона и был избран членом Института.

В первых своих статьях, напечатанных в начале девяностых, Вольта разделяет точку зрения Гальвани. Но вскоре намечается будущий отход от этой теории, на первый план выдвигаются физические моменты эффекта. Сначала Вольта устанавливает, что соответствующим образом «препарированная лягушка представляет, если можно так выразиться, животный электрометр, несравненно более чувствительный, чем всякий другой самый чувствительный электрометр».

Потом ученый определяет важность контакта разнородных металлов. «Такое различие металлов безусловно необходимо; если же обе обкладки из одного и того же металла, то следует, чтобы они отличались, по крайней мере, по способу их приложения...» (т. е. по состоянию контактной поверхности). Далее Вольта показывает, что ток электрического флюида обусловлен контактом разнородных металлов и может производить не только мышечные сокращения, но и другие раздражения нервов. Наконец, Вольта устанавливает полярность эффекта: перемена обкладок местами вызывает изменение вкуса с кислого на щелочной. В свете этих фактов теория мышечной лейденской банки Вольта представляется несостоятельной.

В дальнейшем Вольта окончательно порывает с теорией животного электричества. Он дает физическую трактовку эффекта. В письме к Кавалло Вольта пишет: « ..я открыл новый весьма замечательный закон, который относится собственно не к животному электричеству, а к обычному электричеству, так как этот переход электрического флюида, переход, который не является моментальным, каким был бы разряд, но постоянным и продолжающимся все время, пока сохраняется сообщение между обеими обкладками, имеет место независимо от того, наложена ли эта обкладка на живое или мертвое животное вещество, или на другие не металлические, но достаточно хорошие проводники, как, например, на воду или на смоченные ею тела» А раньше 10 февраля 1794 года в письме к тому же Кавалло Вольта прямо начинает вопросом: «Что вы думаете о так называемом животном электричестве? Что касается меня, то я давно убежден, что все действие возникает

52

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

первоначально вследствие прикосновения металлов к какому-нибудь влажному телу или самой воде».

Физиологические раздражения нервов являются результатом проходящего тока, и эти раздражения «тем сильнее, чем дальше отстоят друг от друга примененные два металла в том ряду, в каком они поставлены нами здесь; цинк, оловянная фольга, обыкновенное олово в пластинках, свинец, железо, латунь и различного качества бронза, медь, платина, золото, серебро, ртуть, графит. Этот знаменитый ряд напряжений Вольта и открытый им закон напряжений составляют ядро всего эффекта. Животные органы, по Вольта, «являются чисто пассивными, простыми, очень чувствительными электрометрами, и активны не они, а металлы, т. е. что от соприкосновения последних и происходит первоначальный толчок электрического флюида, одним словом, что такие металлы не простые проводники или передатчики тока, но настоящие двигатели электричества...» В одном из примечаний к этой статье Вольта вновь подчеркивает, что к идее о контактном напряжении он пришел уже более трех лет тому назад и уже в 1793 году дал свой ряд металлов.

Таким образом, суть эффекта заключается, по мнению Вольта, в свойстве проводников «вызывать и приводить в движение электрический флюид там, где несколько таких проводников разного класса и сорта встречаются и соприкасаются между собою».

«Отсюда и получается, что если из них три и больше, и притом различные, составляют вместе проводящую цепь, если, например, между двумя металлами — серебром и железом, свинцом и латунью, серебром и цинком и т. д. — ввести один или более проводников, именно из того класса, который назван классом влажных проводников, так как они представляют жидкую массу или содержат некоторую влагу (к ним причисляются животные тела и все их свежие и сочные части), если, говорю я, проводник этого второго класса находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов, то вследствие этого возникает постоянный электрический ток того или иного направления, смотря по тому, с какой из сторон действие на него оказывается сильнее в результате такого соприкосновения».

Так ясно и четко Вольта сформулировал условия возникновения постоянного тока: наличие замкнутой цепи из различных проводников, причем, по крайней мере, один должен быть проводником второго класса и соприкасаться с различными проводниками первого класса. Гальва-нисты в ответ приводили опыты, в которых мышечные движения возбуждались дугой из однородного проводника и даже, как в опытах Валли, соприкосновениями различных препаратов без металлического проводника. На это Вольта указывал, что и в этих опытах имеется неоднородность. Концы одной проводящей дуги различны, осуществить их полную однородность почти невозможно, контактная разность может возникнуть и при соприкосновении различных проводников второго класса.

основы мироздания

53

«...Неметаллические проводники, проводники жидкие или содержащие в себе в той или иной мере влагу, те, которые мы называем проводниками второго класса, и они одни, сочетаясь друг с другом, будут являться возбудителями, как металлы, или проводники первого класса в сочетании с проводниками второго класса...»

В дальнейшем Вольта в целях устранения всяких сомнений в не физиологической, а чисто физической сути дела исключает животные препараты, служившие до тех пор индикаторами тока. Он разрабатывает методику измерений контактных разностей потенциалов своим конденсаторным электрометром. Об этих классических опытах Вольта сообщает в письме к Грену в 1795 году и Альдини в 1798 году.

20 марта 1800 года Вольта написал свое знаменитое письмо Бенксу с описанием своего столба — изобретения, произведшего подлинную революцию в науке об электричестве.

П.С. Кудрявцев пишет в своей книге: «Природа открытого эффекта была очень сложна, и при тогдашнем уровне физико-химических наук и физиологии раскрыть картину явления было невозможно. В споре о природе явления по существу оказались правы обе стороны. Гальвани стал основоположником электрофизиологии, а Вольта — основоположником учения об электричестве. В лабиринте противоречивых опытов и наблюдений Вольта нащупал правильный путь, нашел опытный физический закон напряжений, дал правильное описание цепи электрического тока. Впереди еще предстояли большие споры по вопросу о причине и природе контактной разности потенциалов, но в ее существовании уже сомнений не оставалось, а в вольтовом столбе наука получила мощное орудие исследования, которым она и не замедлила воспользоваться».

основы мироздания

55

Жозеф Луи Гей-Люссак

ЗАКОН ПРОСТЫХ ОБЪЕМНЫХ ОТНОШЕНИЙ

Открытие Гей-Люссаком закона простых отношений объемов реагирующих газов оказало сильное влияние на развитие теоретической химии. Этот закон вместе с только что открытым Дальтоном законом кратных отношений лег в основу теории химических соединений. Гей-Люссак принадлежит к тем химикам, которые в первой половине XIX века заложили основы классической химии.

Жозеф Луи Гей-Люссак (1778—1850) родился в небольшом городке Сен-Леонар во французском графстве Лимузен. Получив в детстве строгое католическое образование, Гей-Люссак в возрасте пятнадцати лет переехал в Париж. Здесь он стал обучаться в пансионе Сансье, где вскоре раскрылись его незаурядные математические способности. С 1797 по 1800 год Гей-Люссак учился в

Париже в Политехнической школе. Преподавал химию в школе известный химик Клод Луи Бертолле. Между Гей-Люссаком и Бертолле возникла дружба, оказавшая большое влияние на становление ученого. По окончании курса Гей-Люссак недолго работал на химических предприятиях. В 1802 году он уже «репетитор» (ассистент) в Политехнической школе.

В том же году Гей-Люссак выступил на заседании Академии наук со своим первым научным сообщением: «Об осаждении оксидов металлов». Воистину 1802 год был счастливым для молодого ученого: независимо от Джона Дальтона, он открыл закон теплового расширения газов. Гей-Люссак нередко проводил исследования совместно с другими видными учеными, что способствовало многим выдающимся открытиям. Вместе с Жаном Батистом Био Гей-Люссак в 1804 году поднялся на воздушном шаре, чтобы определить температуру и содержание влаги в верхних слоях атмосферы. Совместно с Вельтером он открыл дитио-новую кислоту. Тесная дружба связывала Гей-Люссака с Луи Жаком Тенаром, парижским профессором химии. Их совместная работа привела к значительному усовершенствованию метода элементного анализа органических веществ.

Гей-Люссак был превосходным экспериментатором и поэтому смог в скромно оборудованной лаборатории открыть многие явления и законы, весьма важные для дальнейшего развития химии.

Уже в 1805 году Гей-Люссак и Александр фон Гумбольдт, изучая отношения объемов реагирующих газов, установили, что один объем

кислорода соединяется с двумя объемами водорода. Эта работа была тесно связана с дальнейшими исследованиями газовых реакций Гей-Люссаком.

Поскольку измерять газы по объему гораздо проще, чем по массе, уже Лавуазье пытался определить объемные отношения при реакции между водородом и кислородом. Объемными отношениями между водородом и азотом при разложении аммиака занимался Бертолле. Таковы были сведения об объемных отношениях при некоторых газовых реакциях.

Гей-Люссак продолжил изучение объемных отношений при реакциях газов. Результаты этих работ он опубликовал в 1808 году в статье «О соединении газообразных тел друг с другом». Он хотел «доказать, что газообразные тела соединяются друг с другом в очень простых отношениях и что уменьшение объема, наблюдаемое при реакциях, подчиняется определенному закону».

Гей-Люссак открыл закон чисто опытным путем. Он не стремился при выводе этого закона изучить всевозможные газовые реакции, а ограничился их сравнительно небольшим числом. На основе этих данных ученый сформулировал закон и сделал из него выводы. Так, измерив объемы взаимодействующих газов, Гей-Люссаку удалось правильно установить состав аммиака и пяти оксидов азота.

Ученый, сопоставив формулировку закона с результатами, полученными другим путем, нашел, что его закон подтверждается. Он смог опереться и на материалы, полученные другими исследователями. Например, он использовал известные определения плотности газов и соответственно соединительные веса негазообразных веществ.

Очень важно, что Гей-Люссаку удалось показать, как на основании открытого им закона можно рассчитать еще неизвестные плотности газообразных веществ: «Наблюдение, что разные виды горючих газов соединяются с кислородом в простых отношениях 1:1; 1:2, дает нам в руки средство определять плотность паров горючих веществ или по крайней мере найти ее приближенно. Если мысленно попытаться перевести все применяемые вещества в газообразное состояние, определенный объем каждого из них будет соединяться либо с равным, либо с двойным, либо с половинным объемом кислорода. Теперь, если мы знаем отношения, в которых кислород может соединяться с горючими веществами, находящимися в твердом или жидком состоянии, мы можем вычислять объем кислорода и объем паров горючего вещества, который соединяется с такими же, либо с двойным, либо с половинным объемом газообразного кислорода».

Ясность и последовательность изложения Гей-Люссаком своих мыслей и результатов исследований может служить прекрасным примером для всех естествоиспытателей.

Берцелиус с большим успехом применил закон Гей-Люссака для определения состава и количественных характеристик многих элемен-

56

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

тов и соединений. Работы французского ученого также существенно помогли укреплению открытого Прустом закона постоянства состава, который оказался применимым не только для твердых, но и для газообразных веществ.

В своих исследованиях Гей-Люссаку необходимо было исходить из качественных наблюдений и принять во внимание количественные исследования в качестве условий и критерия для формулировки закона Так возникло в химии представление о связи между качеством и количеством. Это существенно способствовало преодолению метафизического понимания природы.

Открыв закон простых объемных отношений, Гей-Люссак оказал значительное влияние на формирование атомно-молекулярного учения.

ЗАКОН ЭРСТЕДА

Идея связи электричества и магнетизма, восходящая к простейшему сходству притяжения пушинок янтарем и железных опилок магнитом, носилась в воздухе, и многие лучшие умы Европы были ею увлечены. В литературе были известны факты намагничивания стальных игл электрической искрой, размагничивания компасов молнией. В трактате по гальванизму Альдини (1804) упоминается о Можоне, намагнитившем стальную иглу вольтовым столбом, и Романьози, наблюдавшего отклонение магнитной стрелки при действии Вольтова столба. Но все эти факты носили характер случайных наблюдений и не только не обобщались, но даже и не описывались сколько-нибудь точно.

Заслуга Эрстеда заключается, прежде всего, в том, что он понял важность и новизну своего открытия и привлек к нему внимание ученого мира.

«Ученый датский физик, профессор, — писал Ампер, — своим великим открытием проложил физикам новый путь исследований. Эти исследования не остались бесплодными; они привлекли к открытию множества фактов, достойных внимания всех, кто интересуется прогрессом».

Ганс Христиан Эрстед (1777—1851) родился на датском острове Лангеланд в городке Рюдкобинг в семье бедного аптекаря. Семья постоянно испытывала нужду, так что начальное образование братьям Гансу Христиану и Андерсу пришлось получать где придется.

Уже в двенадцать лет Ганс был вынужден стоять за стойкой отцовской аптеки. Здесь медицина надолго пленила его, потеснив химию, историю, литературу, и еще более укрепила в нем уверенность в его научном предназначении. Он решает поступать в Копенгагенский университет, где берется за все — медицину, физику, астрономию, философию, поэзию.

Золотая медаль университета 1797 года была присуждена ему за эссе «Границы поэзии и прозы». Следующая его работа, также высоко оцененная, касалась свойств щелочей, а диссертация, за которую он получил звание доктора философии, была посвящена медицине.

В двадцать лет Эрстед получил диплом фармацевта, а в двадцать два года степень доктора философии. Блестяще защитив диссертацию, Ганс едет по направлению университета на стажировку во Францию, Герма-

58

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

нию, Голландию. Там Эрстед слушал лекции о возможностях исследований физических явлений с помощью поэзии, о связи физики с мифологией

В 1806 году Эрстед становится профессором Копенгагенского университета Увлекшись философией Шеллинга, он много думал о связи между теплотой, светом, электричеством и магнетизмом. В 1813 году во Франции выходит его труд «Исследования идентичности химических и электрических сил». В нем он впервые высказывает идею о связи электричества и магнетизма. Он пишет- «Следует испробовать, не производит ли электричество... каких-либо действий на магнит...» Его соображения были простыми: электричество рождает свет — искру, звук — треск, наконец, оно может производить тепло — проволока, замыкающая зажимы источника тока, нагревается. Не может ли электричество производить магнитных действий7 Говорят, Эрстед не расставался с магнитом. Тот кусочек железа должен был непрерывно заставлять его думать в этом направлении. Магнит совершил, видимо, немало миль в Эрстедовом сюртуке.

Сегодня любой школьник без труда воспроизведет опыт Эрстеда, продемонстрирует «вихрь электрического конфликта», насыпав на картон, через центр которого проходит проволока с током, железные опилки.

Но обнаружить магнитные действия тока было нелегко Их пытался обнаружить русский физик Петров, соединяя полюсы своей батареи железными и стальными пластинками. Он не обнаружил никакого намагничивания пластинок после нескольких часов пропускания через них тока. Имеются сведения и о других наблюдениях, однако с полной достоверностью известно, что магнитные действия тока наблюдал и описал Эрстед.

15 февраля 1820 года Эрстед, уже заслуженный профессор химии Копенгагенского университета, читал своим студентам лекцию. Лекция сопровождалась демонстрациями. На лабораторном столе находились источник тока, провод, замыкающий его зажимы, и компас. В то время когда Эрстед замыкал цепь, стрелка компаса вздрагивала и поворачивалась. При размыкании цепи стрелка возвращалась обратно. Это было первое экспериментальное подтверждение связи электричества и магнетизма, того, что так долго искали многие ученые.

Казалось бы, все ясно. Эрстед продемонстрировал студентам еще одно подтверждение давнишней идеи о всеобщей связи явлений. Но почему же возникают сомнения? Почему вокруг обстоятельств этого события впоследствии разгорелось так много споров? Дело в том, что студенты, присутствовавшие на лекции, рассказывали потом совсем другое. По их словам, Эрстед хотел продемонстрировать на лекции всего лишь интересное свойство электричества нагревать проволоку, а компас оказался на столе совершенно случайно. И именно случайностью объясняли они то, что компас лежал рядом с этой проволокой, и совсем случайно, по их мнению, один из зорких студентов обратил внимание

ОСНОВЫ МИРОЗДАНИЯ

59

на поворачивающуюся стрелку, а удивление и восторг профессора, по их словам, были неподдельными. Сам же Эрстед в своих позднейших работах писал: «Все присутствовавшие в аудитории свидетели того, что я заранее объявил о результате эксперимента. Открытие, таким образом, не было случайностью, как хотел бы заключить профессор Гильберт из тех выражений, которые я использовал при первом оповещении об открытии».

Случайно ли то, что именно Эрстед сделал открытие? Ведь счастливое сочетание нужных приборов, их взаимного расположения и «режимов работы» могло получиться в любой лаборатории? Да, это так. Но в данном случае случайность закономерна — Эрстед был в числе тогда еще немногих исследователей, изучающих связи между явлениями.

Однако стоит вернуться к сути открытия Эрстеда. Нужно сказать, что отклонение стрелки компаса в лекционном опыте было весьма небольшим. В июле 1820 года Эрстед снова повторил эксперимент, используя более мощные батареи источников тока. Теперь эффект стал значительно сильнее, причем тем сильнее, чем толще была проволока, которой он замыкал контакты батареи. Кроме того, он выяснил одну странную вещь, не укладывающуюся в ньютоновские представления о действии и противодействии. Сила, действующая между магнитом и проволокой, была направлена не по соединяющей их прямой, а перпендикулярно к ней. Выражаясь словами Эрстеда, «магнитный эффект электрического тока имеет круговое движение вокруг него». Магнитная стрелка никогда не указывала на проволоку, но всегда была направлена по касательной к окружностям, эту проволоку опоясывающим. Как будто бы вокруг проволоки вихрились невидимые сгустки магнитных сил, влекущих легкую стрелку компаса. Вот чем был поражен ученый. Вот почему в своем четырехстраничном «памфлете» он, опасаясь недоверия и насмешек, тщательно перечисляет свидетелей, не забывая упомянуть ни об одной из их научных заслуг.

Эрстед, давая, в общем, неправильное теоретическое толкование эксперименту, заронил глубокую мысль о вихревом характере электромагнитных явлений. Он писал: «Кроме того, из сделанных наблюдений можно заключить, что этот конфликт образует вихрь вокруг проволоки». Другими словами, магнитные силовые линии окружают проводник с током или электрический ток является вихрем магнитного поля. Таково содержание первого основного закона электродинамики, и в этом суть открытия ученого. Опыт Эрстеда доказывал не только связь между электричеством и магнетизмом. То, что открылось ему, было новой тайной, не укладывающейся в рамки известных законов.

21 июля 1820 года в Копенгагене вышла на латинском языке брошюра «Опыты, касающиеся действия электрического конфликта на магнитную стрелку» Эрстед разослал ее во все ученые учреждения и

60

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

физические журналы. Этим он хотел подчеркнуть важность своего открытия. И, действительно, открытие Эрстеда произвело впечатление научной сенсации и вызвало столь мощный резонанс, что можно без преувеличения сказать: произошло второе рождение гальванизма.

В результате открытия Эрстеда удалось установить связь между двумя группами явлений, которые со времен Гильберта считались принципиально различными. Был открыт новый вид взаимодействия. До сих пор физика знала центральные силы. Провод не притягивает и не отталкивает полюсов стрелки, а устанавливает ее перпендикулярно своей длине. «Опыт Эрстеда совершенно противен элементарным правилам механики», — замечает Араго.

Наконец, новое открытие давало в руки физикам средство построить чувствительный и удобный индикатор электрического тока. И уже в сентябре 1820 года Швейггер изобрел мультипликатор, а в 67-м томе «Гильбертовских анналов» за 1821 год появилось описание Пог-гендорфа конструкции мультипликатора в его современной школьной форме.

И последнее, эффективность и гибкость нового взаимодействия заключали в себе зерно будущих тех'нических приложений электрической силы.

После выхода мемуара Эрстеда дальнейшие события развивались в весьма непривычном для неторопливой тогда науки темпе. Уже через несколько дней мемуар появился в Женеве, где в то время был с визитом Араго. Первое же знакомство с опытом Эрстеда доказало ему, что найдена разгадка задачи, над которой бился и он, и многие другие. Впечатление от опытов было столь велико, что один из присутствующих при демонстрации поднялся и с волнением произнес ставшую впоследствии знаменитой фразу: «Господа, происходит переворот!»

Араго возвращается в Париж потрясенный На первом же заседании Академии, на котором он присутствовал сразу по возвращении, 4 сентября 1820 года он делает устное сообщение об опытах Эрстеда. Записи, сделанные в академическом журнале ленивой рукой протоколиста, свидетельствуют, что академики просили Араго уже на следующем заседании, 22 сентября, показать всем присутствующим опыт Эрстеда, что называется, «в натуральную величину».