Жизнь человека с самого начала складывалась так, что все, чем бы он не занимался, заставляло его наблюдать за окружающим миром и делать из этого выводы

Вид материалаДокументы

Содержание


Основы мироздания
100 Великих научных открытий
Периодический закон
100 Великих научных открытий
100 Великих научных открытий
Основы мироздания
Подобный материал:
1   ...   9   10   11   12   13   14   15   16   ...   50

Август Кекуле (1829—1896) родился в Германии. Мальчик оказался поразительно одаренным. Еще в школе он мог свободно говорить на четырех языках, обладал литературными способностями. По проекту гимназиста Кекуле было построено три дома! После окончания школы Август уехал в Гиссен учиться в университете.

В университете Август впервые услышал имя Юстуса Либиха. Кекуле решил посещать лекции прославленного ученого, хотя и не интересовался химией.

Первая научная работа Кекуле об амилсерной кислоте получила высокую оценку профессора Билля. За нее в июне 1852 года Ученый совет университета присудил ему степень доктора химии.

После окончания университета молодой ученый некоторое время работал в Швейцарии у Адольфа фон Планта, а затем переехал в Лондон, где ему рекомендовали лабораторию Джона Стенхауза.

Вопрос о валентности чрезвычайно занимал Кекуле, и у него постепенно вызревали идеи экспериментальной проверки некоторых теоретических положений, которые он решил изложить в своей статье. В ней Кекуле сделал попытку обобщить и расширить теорию типов, разработанную Жераром.

Весной 1855 года Кекуле покинул Англию и вернулся в Дармштадт. Он посетил университеты Берлина, Гиссена, Геттингена и Гейдельберга, но вакантных мест там не было. Тогда он решил просить разрешения определиться в качестве приват-доцента в Гейдельберге.

Все свободное время Кекуле посвятил исследовательской работе. Свое внимание он сосредоточил на гремучей кислоте и ее солях, строение которых оставалось еще не выясненным.

Ему удалось расширить и дополнить теорию типов. К основным Кекуле добавил еще один — тип метана. Свои выводы он изложил в статье «О конституции гремучей ртути». В статье «О теории многоатомных радикалов» Кекуле сформулировал основные положения своей теории валентности. Он обобщил выводы Франкланда, Уиль-ям-сона, Одлинга и разработал вопрос о соединительной способности атомов.

В статье «О составе и превращениях химических соединений и о химической природе углерода» Кекуле обосновал четырехвалентность углерода в органических соединениях. Он также отмечал, что попытка Жерара подвести все химические реакции под один общий принцип —

ОСНОВЫ МИРОЗДАНИЯ

117


двойной обмен — не оправдана, так как существуют реакции прямого соединения нескольких молекул в одну.

Кекуле выдвинул совершенно новые идеи, идеи об углеродных цепях. Это была революция в теории органических соединений. Это были первые шаги в теории структуры органических соединений.

В конце 1858 года Кекуле уехал в Гент, где продолжил исследовательскую работу.

«...Кекуле принялся за изучение структуры бензола и его производных, требовавшее, прежде всего, отыскания подходящих средств для изложения учебного материала в разделе ароматических соединений, — пишет К.Манолов. — Он хорошо знал книгу Лошмидта, вышедшую в 1861 году, в которой впервые формулы органических соединений были представлены согласно атомной теории. Знал и теорию Бутлерова, которую еще полностью не принимал, но и не мог отвергнуть... Атомы в молекуле взаимно влияют друг на друга, и свойства молекулы зависят от расположения атомов. Кекуле представлял себе углеродные цепи в виде змей. Они извивались, принимали самые различные положения, отдавали или присоединяли атомы, превращаясь в новые соединения. Кекуле обладал большим даром воображения, и, закрывай глаза, он реально представлял картину чудесных превращений одной молекулы в другую. И все-таки представить структуру бензола ему пока не удавалось. Как расположены шесть углеродных и шесть водородных атомов в его молекуле? Кекуле делал десятки предположений, но, поразмыслив, отбрасывал.

Утомленный работой, Кекуле отложил исписанные листы и подвинул кресло к камину. Приятная теплота постепенно окутала тело, и ученый забылся в полудреме. И снова в его сознании возникли шесть углеродных атомов, образуя причудливые фигуры. Шестиатомная «змея» непрерывно «извивалась» и вдруг, будто разозленная чем-то, она с ожесточением начала кусать себя за хвост, потом крепко ухватила его за кончик и так замерла. Нет, не змея, это же перстень графини Герлиц, который протягивал Кекуле Юстус Либих. Да, на его ладони лежит перстень — платиновая змея, переплетенная с золотой. Кекуле вздрогнул и очнулся. Какой странный сон! И длился-то всего мгновенье. Но атомы и молекулы не исчезали перед его глазами, он продолжал наяву вспоминать порядок расположения атомов в молекуле, увиденный во сне. Может быть, это и есть решение? Кекуле поспешно набросал на листке бумаги новую форму цепи. Первая кольцевая формула бензола...

Идея бензольного кольца дала новый толчок для экспериментальных и теоретических исследований. Статью «О строении ароматических соединений» Кекуле послал Вюрцу, который представил ее Парижской Академии наук. Статья была напечатана в «Бюллетене Академии» в январе 1865 года. Наука обогатилась еще одной новой, исключительно плодотворной теорией строения ароматических соединений.

•J

118

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

Дальнейшие исследования в этой области привели к открытию различных изомерных соединений, многие ученые стали проводить опыты по выяснению строения ароматических веществ, предлагали другие формулы бензола... Но теория Кекуле оказалась наиболее правомерной и вскоре утвердилась повсеместно. На основе своей теории Кекуле предсказал возможность существования трех изомерных соединений (орто, мета и пара) при наличии двух заместителей в бензольном кольце. Перед учеными открылось еще одно поле деятельности, появилась возможность синтеза новых веществ. В Германии над этим работали Гофман, Байер, во Франции — Вюрц, в Италии — Канниццаро, в России — Бутлеров и другие».

Формула бензола Кекуле вызвала и многочисленные возражения. Как пишет Г.В. Быков: «А. Клаус в 1867 году обратил внимание на то, что бензол по своим свойствам несходен с этиленом, на который он должен был бы походить судя по формуле Кекуле, и предложил свои формулы с перекрещивающимися связями. А. Ладенбург в 1869 году отметил, что по формуле Кекуле должны существовать два изомера для продуктов замещения при соседних углеродах, и предложил свою, призматическую, формулу.

А. Кекуле еще в 1869 году писал, что он считает эти возражения «не слишком вескими», и привел ряд реакций, хорошо объяснимых его формулой, которая кажется ему к тому же «элегантней и симметричней» других. В 1872 году он попытался вообще снять выдвинутые возражения, предложив так называемую осцилляционную гипотезу, согласно которой углеродный атом в какой-то момент соударяется один раз с одним и два раза с другим соседним атомом, а в следующий момент — наоборот. Эти удары, по представлениям Кекуле, соответствуют одинарной и двойной связям.

Дискуссия о строении бензольного ядра продолжалась еще многие годы. Была экспериментально опровергнута призматическая формула А. Ладенбурга, были выдвинуты известные формулы Г. Армстронга и А. Байера, физический смысл которых был еще менее ясен, и т. д. Но для установления строения огромного большинства ароматических соединений это и не имело существенного значения; важны были лишь следующие положения: атомы углерода расположены симметрично (в углах правильного шестиугольника), и все они равноценны друг другу»-

ПЕРИОДИЧЕСКИЙ ЗАКОН

В истории развития науки известно много крупных от -крытий. Но немногие из них можно сопоставить с тем, что сделал Менделеев — крупнейший химик мира. Хотя со времени открытия его закона прошло много лет, никто не может сказать, когда будет до конца понято все содержание знаменитой «таблицы Менделеева».

По словам самого Дмитрия Ивановича Менделеева, открытию периодического закона способствовало накопление «к концу 60-х годов таких новых сведений о редких элементах, которые открыли их разносторонние связи между собой и другими элементами». Можно перечислить и ряд других данных, которые дополняли представления о сходстве элементов и их свойствах: изучение изоморфизма, введение понятия о валентности, разработка новых способов определения атомных масс, обсуждение гипотезы Праута и др. И действительно, уже в пятидесятые—шестидесятые годы появилось свыше десятка заслуживающих внимания попыток найти систему элементов.

Все чаще в некоторых работах появляются мысли о необходимости классификации химических элементов. Так, в работе А. Беренфельда указывается, что серьезное значение имеет изучение редких элементов: «...они все более и более пополняют пробелы между известными... телами природы и помогают составить из этих тел непрерывный ряд, в котором всякий элемент имел бы свое определенное место».

Особенно интересна в этом отношении диссертация Н. Алышев-ского (1865), который писал: «В последнее время при громадном обилии материалов в химии все более и более пробивается стремление систематизировать, группировать выработанные факты. Современные химики пришли к заключению, что многие химические элементы, весьма различные по своим наружным физическим свойствам, в своих химических функциях очень сходны, даже тождественны между собой». И еще: «Если... естественные группы установятся в неорганической химии для всех, пока еще разрозненных, химически неделимых тел, тогда

И. Е. Репин. Д. И. Менделеев

120

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

изучение реакций этих облегчится в высшей степени, а с тем вместе представится возможность сделать те выводы, установить такие законы, которые до сих пор были уделом только одной органической химии».

Сам Н. Алышевский провел сравнение некоторых свойств на основе положения элементов в их естественных группах.

Но если уровень знаний эпохи объективно определил возможность научного решения проблемы, то от уровня знаний ученого и его мировоззрения зависело превратить эту возможность в действительность. Это не случайно удалось осуществить Менделееву.

Дмитрий Менделеев (1834—1907) родился в Тобольске в семье директора гимназии и попечителя народных училищ Тобольской губернии Ивана Павловича Менделеева и Марии Дмитриевны Менделеевой, урожденной Корнильевой. Воспитывала его мать, поскольку отец будущего химика ослеп вскоре после рождения своего сына.

Осенью 1841 года Митя поступил в Тобольскую гимназию. Он был принят в первый класс с условием, что останется там два года, пока ему не исполнится восемь лет.

Несчастья преследовали семью Менделеевых. Осенью 1847 года умер отец, а через три месяца — сестра Аполлинария. Весной 1849 года Митя окончил гимназию, и Марья Дмитриевна, распродав имущество, вместе с детьми отправилась сначала в Москву, а затем в Петербург. Ей хотелось, чтобы младший сын поступил в университет.

Лишь по ходатайству матери 9 августа 1850 года Дмитрий был зачислен студентом Главного педагогического института в Петербурге по физико-математическому факультету.

Первый научный труд Менделеева «Химический анализ ортита из Финляндии» был опубликован в 1854 году, на следующий год он окончил институт. В мае 1855 года Ученый совет присудил Менделееву титул «Старший учитель» и наградил золотой медалью. Врачи рекомендовали ему сменить нездоровый петербургский климат и уехать на юг.

В Одессе Менделеева назначили преподавателем математики, физики и естественных наук в гимназию при Ришельевском лицее. Много времени он отдавал работе над магистрской диссертацией, в которой рассматривал проблему «удельных объемов» с точки зрения унитарной теории Жерара, полностью отбросив дуалистическую теорию Берцели-уса. Эта работа показала удивительную способность Менделеева к обобщению и его широкие познания в химии.

Осенью Менделеев блестяще защитил диссертацию, с успехом прочел вступительную лекцию «Строение силикатных соединений» и в начале 1857 года стал приват-доцентом при Петербургском университете.

В 1859 году он был командирован за границу. Два года Менделеев провел в Германии, где организовал собственную лабораторию. В конце февраля 1861 года Менделеев приехал в Петербург. Найти преподавательскую работу в середине учебного года было невозможно. И он решается написать учебник органической химии. Вышедший вскоре в свет учеб-

основы мироздания

121

ник, а также перевод «Химической технологии» Вагнера принесли Менделееву большую известность.

1 января 1864 года Менделеев получил назначение на должность штатного доцента органической химии Петербургского университета. Одновременно с этой должностью Менделеев получил место профессора в Петербургском технологическом институте. Теперь забот о материальном обеспечении семьи стало меньше, и Менделеев приступил к работе над докторской диссертацией.

Защита диссертации состоялась 31 января 1865 года. Через два месяца Менделеев был назначен экстраординарным профессором по кафедре технической химии Петербургского университета, а в декабре — ординарным профессором.

В то время возникла острая необходимость создать новый учебник по неорганической химии, который бы отражал современный уровень развития химической науки. Эта идея захватила Менделеева. Одновременно он начал собирать материал для второго выпуска учебника, куда должно было войти описание химических элементов.

Менделеев тщательно изучил описание свойств элементов и их соединений. Но в каком порядке их проводить? Никакой системы расположения элементов не существовало. Тогда ученый сделал картонные карточки. На каждую карточку он заносил название элемента, его атомный вес, формулы соединений и основные свойства. Постепенно корзина наполнялась карточками, содержащими сведения обо всех известных к этому времени элементах. И все равно долгое время ничего не получалось. Говорят, что периодическую таблицу элементов ученый увидел во сне, оставалось ее лишь записать и обосновать.

Но, конечно же, открытие было совершено им не случайно, так как в его деятельности органически сочетались теория и практика, знание физической стороны явления, математическая интуиция и философское осмысление. Кроме того, Менделеев умел критически относиться к работам своих предшественников и современников. Не пересыщая себя информацией, он как бы пропускал полученные уже данные через призму еще не сформировавшейся до конца концепции и, подобно скульптору, отсек все лишнее.

Постепенно Менделеев понял, что с изменением атомного веса меняются и свойства элементов. Приближался к концу февраль 1869 года. Через несколько дней рукопись статьи, содержащей таблицу элементов, была закончена и сдана в печать.

1 марта 1869 года Д.И. Менделеев отправил в типографию листок, на котором был записан его «Опыт системы — элементов, основанной на их атомном весе и химическом сходстве». Через две недели он представил в Русское химическое общество статью «Соотношение свойств с атомным весом элементов». Сообщение об открытии Менделеева было сделано редактором «Журнала Русского химического общества» профессором Н.А. Меншуткиным на заседании общества 6 марта 1869 года. Сам

122

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

Менделеев на заседании не присутствовал, так как в это время по заданию Вольного экономического общества он обследовал сыроварни Тверской и Новгородской губерний.

С того дня, когда за простыми рядами символов химических элементов Менделеев увидел проявление закона природы, другие проблемы отошли на задний план. Он забросил работу над учебником «Основы химии», не занимался и исследованиями. Распределение элементов в таблице казалось ему несовершенным. По его мнению, атомные веса во многих случаях были определены неточно, и поэтому некоторые элементы не попадали на места, соответствующие их свойствам. Взяв за основу периодический закон, Менделеев изменил атомные веса этих элементов и поставил их в один ряд со сходными по свойствам элементами

В статье, вышедшей на немецком языке в «Анналах», издаваемых Либихом, Менделеев отвел большое место разделу «Применение периодического Закона для определения свойств еще не открытых элементов». Он предсказал и подробно описал свойства трех неизвестных еще науке элементов — эка-бора, эка-алюминия и эка-кремния.

Казалось, для Менделеева вопрос о периодическом законе был исчерпан. Но однажды осенью 1875 года, когда Менделеев просматривал доклады Парижской Академии наук, взгляд его упал на сообщение Лекока де Буабодрана об открытии нового элемента, названного им галлием. Однако французский исследователь указал удельный вес галлия — 4,7, а по вычислениям Менделеева у эка-алюминия получалось 5,9. Менделеев решил написать ученому, указав, что, судя по свойствам открытого им галлия, это не что иное, как предсказанный в 1869 году эка-алюми-ний.

И, действительно, более точные определения удельного веса галлия дали значение 5,94. Открытие галлия вызвало настоящую сенсацию среди ученых. Имена Менделеева и Лекока де Буабодрана сразу стали известны всему миру. Ученые, воодушевленные первым успехом, начали искать остальные, еще не открытые элементы, которые были предсказаны Менделеевым. В десятках лабораторий Европы закипела работа, сотни ученых мечтали о необыкновенных открытиях.

И успехи не заставили себя долго ждать. В 1879 году профессор Ларе Фредерик Нильсон, работавший в Упсальском университете (Швеция), открыл новый элемент, полностью соответствующий описанному Менделеевым эка-бору. Он назвал его скандием. Повторное доказательство предсказаний Менделеева вызвало настоящий триумф. Вскоре стали поступать сообщения об избрании Менделеева почетным членом различных европейских университетов и академий.

Прекрасным подтверждением менделеевского закона явилась и открытая Рамзаем группа инертных газов, давшая возможность включить в систему «нулевую» группу — пограничную между щелочными металлами и металлоидами. Сам Менделеев писал об «укрепителях»

ОСНОВЫ МИРОЗДАНИЯ

123

закона: «Писавши в 1871 году статью о приложении периодического закона к определению свойств еще неоткрытых элементов, я не думал, что доживу до оправдания этого следствия периодического закона, но действительность ответила иначе. Описаны были мною три элемента: экабор, экаалюминий и экасилиций, и не прошло 20 лет, как я имел уже величайшую радость видеть все три открытыми и получившими свои имена от тех трех стран, где найдены редкие минералы, их содержащие, и где сделано их открытие: галлия, скандия и германия. Л. де Буабодрана, Нильсона и Винклера, их открывших, я, с своей стороны, считаю истинными укрепителями периодического закона. Без них он не был бы признан в такой мере, как это случилось ныне В такой же мере я считаю Рамзая утвердителем справедливости периодического закона...» Сегодня ясно, что в менделеевском открытии слились воедино три линии развития химии: поиски систематики различных объектов химии (от атомов до кристаллов) в их взаимосвязи — понятие «химический элемент» их объединило; изучение индивидуальности элементов, особенно мало применявшихся тогда редких элементов, что позволило раскрыть понятие элемент-аналогии; изучение взаимосвязи свойств с составом и строением соединений, что привело к формированию целостного учения о периодичности.

ч

основы мироздания

125

Якоб Генри Вант-Гофф

СТЕРЕОХИМИЯ

«Идеи относительно «пространственного устройства мельчайших частиц материи стали высказываться с тех пор, как в науке появилось само представление о молекулах и составляющих их атомах, — пишет В.М. Потапов. — Так, еще Дж. Дальтон в начале XIX века говорил о возможных шарообразных, тетраэдрических, гексаэдрических формах в атомистике.

Примерно в то же самое время В. Вол-ластон обращал внимание на необходимость рассматривать расположение атомов в пространстве и указывал, что «устойчивое равновесие» при соединении атомов двух видов в соотношении 1:4 достигается при тетраэдрическом их расположении. Однако на возможность познать «геометрическое расположение первичных частичек» Волластон смотрел пессимистично. Мысли о возможности различного

расположения атомов в молекулах неоднократно высказывались в начале XIX века рядом ученых в связи с обсуждением проблем изомерии...

Так, в 1831 году Я. Берцелиус писал, что «существуют тела, составленные из одинакового числа атомов тех же элементов, но расположенных неодинаковым образом и поэтому имеющих неодинаковые химические свойства и неодинаковую кристаллическую форму».

Уже в конце сороковых годов Л. Гмелин отмечал: «Атомы не располагаются, как это выражается формулой, в одном ряду... а приближаются, на основании сродства, по возможности ближе друг к другу, вследствие чего они образуют более или менее регулярные фигуры. Поэтому чрезвычайно важно определить это расположение атомов... ибо от этого, может быть, прольется больше света на кристаллическую форму, изомерию... на конституцию органических соединений».

Знаменитый русский химик A.M. Бутлеров в ряде своих ранних работ также высказывал интересные мысли о пространственном строении молекул: «...я не верю, что невозможно, как это думает Кекуле, представить на плоскости положение атомов в пространстве».

Это высказывание 1864 года, а двумя годами ранее Бутлеров говорил о тетраэдрическом расположении заместителей вокруг углеродного атома: «...возьмем грубый пример и, предположив, что у четырехатомного пая углерода все 4 единицы сродства различны, представим его себе в виде тетраэдра, у которого каждая из 4-х плоскостей способна связать 1 пай

водорода...» Тем не менее нет оснований причислять Бутлерова к основателям стереохимии.

П.И. Вальден рассуждает: «Почему, спрашивается, потребовалось еще 25 лет, чтобы лишь в 1874 году возникла стереохимия?.. Ответ может быть легко дан: идея появилась ранее фактов! Факты, наблюдения — вот та питательная среда, в которой существует и развивается, а по мере надобности, в зависимости от накопления фактов, трансформируется идея».

Явления, непосредственно послужившие толчком для зарождения стереохимии, были открыты в одной из пограничных областей физики и химии при исследовании взаимодействия света и вещества.

Сначала был открыт поляризованный свет. Дальнейшие его исследования выполнил французский ученый и политический деятель Доминик Франсуа Араго (1786—1853). В 1811 году ему удалось обнаружить, что кварц обладает способностью вращать плоскость поляризации света. Араго назвал подобное явление оптической активностью. Становилось все более очевидным, что такая способность связана с кристаллическим состоянием. Ведь стоит растворить кварц, и он теряет оптическую активность.