В. Ф. Пономарев математическая логика

Вид материалаУчебное пособие

Содержание


Варианты заданий
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   12

Варианты заданий


вариант

удалить

(столбец, строка)

задание

1

2

3

1

для r1: (3, 1), (4, 2), (7, 7), (8, 8);

для r2: (3, 4), (4, 5), (7, 6), (8, 8)
  1. (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A2, r2.A5, r2.A6)(r1>2, d(r1.A6)d(r2.A6)



2

для r1: (3, 1), (4, 2), (7, 7), (8, 8);

для r2: (3, 3), (4, 5), (7, 6), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, d(A2)=b2);

r1.A2=r2.A2=A2

3

для r1: (3, 1), (4, 2), (7, 7), (8, 8);

для r2: (3, 3), (4, 4), (7, 6), (8, 8)
  1. (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A2, r2.A5, r2.A6)(r1>2, d(r1.A6)d(r2.A5))


4

для r1: (3, 1), (4, 2), (7, 7), (8, 8);

для r2: (3, 3), (4, 5), (7, 6), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4)((r1>2,d(A5)4),d(r1.A2)=b2, d(r2.A2)=b3);

r1.A5=r2.A5=A5

5

для r1: (3, 1), (4, 2), (7, 7), (8, 8);

для r2: (3, 3), (4, 5), (7, 6), (8, 7)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A1, r1.A5, r2.A6)(r1>2, d(r1.A6)d(r2.A5))

6

для r1: (3, 1), (4, 2), (7, 6), (8, 8);

для r2: (3, 4), (4, 5), (7, 6), (8, 8)
  1. (r1r2); 2) (r1r2); 3) (r1\r2);

4)((r1>2,d(A2)=b3), d(r1.A5)4, d(r2.A6)3);

r1.A2=r2.A2=A2

Продолжение

1

2

3



7

для r1: (3, 1), (4, 2), (7, 6), (8, 8);

для r2: (3, 3), (4, 5), (7, 6), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A1, A3, A5, r2.A6)(r1>2, d(A1)=a3);

r1.A1=r2.A1=A1

8

для r1: (3, 1), (4, 2), (7, 6), (8, 8);

для r2: (3, 3), (4, 4), (7, 6), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, d(r1.A5)d(r2.A6)), d(r1.A1)=a3)


9

для r1: (3, 1), (4, 2), (7, 6), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4)(r1.A1,r1.A2,r2.A5,A6)(r1>2, d(r1.A6)d(r2.A6)))


10

для r1: (3, 1), (4, 2), (7, 6), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 6)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, (d(A5)2)), d(r1.A1)=a3);

r1.A5=r2.A5=A5

11

для r1: (3, 1), (4, 2), (7, 5), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 6)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4)(r1.A1,r2.A2,r2.A6(r1>2,(d(A6)=1,d(r1.A1)=a4));

r1.A6=r2.A6=A5

12

для r1: (3, 1), (4, 2), (7, 5), (8, 8);

для r2: (3, 3), (4, 4), (7, 6), (8, 7)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, r1.A5=r2.A5), d(r1.A1)=a3)


Продолжение

1

2

3

13

для r1: (3, 1), (4, 2), (7, 5), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A1, r2.A2, r1.A5, r2.A6) (r1>2, r1.A5=r2.A6)

14

для r1: (3, 1), (4, 2), (7, 5), (8, 8);

для r2: (3, 3), (4, 4), (7, 6), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, (r1.A5=r2.A5)), d(r1.A1)=a3)

15

для r1: (3, 1), (4, 2), (7, 5), (8, 8);

для r2: (3, 3), (4, 4), (7, 7), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A1, r2.A2, r1.A5, r2.A6) (r1>2, r1.A5=r2.A6)

16

для r1: (3, 1), (4, 2), (7, 4), (8, 8);

для r2: (3, 3), (4, 4), (7, 7), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, r1.A6=r2.A6), d(r2.A1)=a2)

17

для r1: (3, 1), (4, 2), (7, 4), (8, 8);

для r2: (3, 3), (4, 4), (7, 6), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A1, r2.A2, r1.A3, r2.A5) (r1>2, d(A5)3);

r1.A5=r2.A5=A5



18

для r1: (3, 1), (4, 2), (7, 4), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, r1.A2=r2.A2), d(r1.A1)=a2)

Продолжение

1

2

3

19

для r1: (3, 1), (4, 2), (7, 4), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 7)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4)(r1.A1,r2.A2,r1.A3,r2.A5)(r1>2,d(A6)3); r1.A6=r2.A6=A6

20

для r1: (3, 1), (4, 2), (7, 4), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 7)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, r1.A2=r2.A2), d(r1.A1)=a2)

21

для r1: (3, 1), (4, 2), (7, 3), (8, 8);

для r2: (3, 3), (4, 4), (7, 7), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A1, r2.A4, r2.A5, r1.A6)(r1>2, d(A5)=4);

r1.A5=r2.A5=A5

22

для r1: (3, 1), (4, 2), (7, 3), (8, 8);

для r2: (3, 3), (4, 4), (7, 6), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, d(r1.A5)d(r2.A5)), d(r1.A1)=a3)


23

для r1: (3, 1), (4, 2), (7, 4), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4)(r1.A1,r1.A2,r1A6,r2.A5)(r1>2, (r1.A5)d(r2.A6))

24

для r1: (3, 1), (4, 2), (7, 3), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 7)
  1. (r1r2); 2) (r1r2); 3) (r1\r2);

4).((r1>2, d(A6)3), d(r2.A1)=a2);

r1.A6=r2.A6=A6

Продолжение

1

2

3

25

для r1: (3, 1), (4, 2), (7, 3), (8, 8);

для r2: (3, 3), (4, 4), (7, 5), (8, 6)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4)(r1.A1,r1.A2,r2.A5,r2.A6)(r1>2, d(r2.A5)d(r1.A5)

26

для r1: (3, 1), (4, 2), (7, 3), (8, 7);

для r2: (3, 3), (4, 4), (7, 7), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, r1.A5=r2.A6), d(r2.A2)=b3)

27

для r1: (3, 1), (4, 2), (7, 3), (8, 7);

для r2: (3, 3), (4, 4), (7, 6), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A1, r2.A2, r2.A5, r1.A6) (r1>2, r1.A5=r2.A5)

28

для r1: (3, 1), (4, 2), (7, 3), (8, 7);

для r2: (3, 3), (4, 4), (7, 5), (8, 8)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) ((r1>2, (r1.A6=r2.A6)), d(r1.A1)=a2)

29

для r1: (3, 1), (4, 2), (7, 3), (8, 7);

для r2: (3, 3), (4, 4), (7, 5), (8, 7)

1) (r1r2); 2) (r1r2); 3) (r1\r2);

4) (r1.A1, r2.A2, r2.A5, r1.A6) (r1>2, r1.A5=r2.A6)