Василий Ленский «Книга теорем 2»

Вид материалаКнига
Подобный материал:
1   ...   20   21   22   23   24   25   26   27   28

Шестиполярное пространство

Янтра шестиполярного пространства


Янтра локи 6 1. A B C D E
2. B E 0 B D
3. C 0 C 0 C
4. D B 0 E B
5. E D C B A
6. 0 0 0 0 0

Примечательным является то, что лока шесть, как бы «расщеплённая» трёхполярность. Законы отношений легко устанавливаются по этой янтре. Например, (А)*(Е) = 0, (B)*(D) = 0, (C)*(C) = 0, (A)*(B)*C) =0, (C)*(D)*(E) = 0. Здесь мы видим предвестие того, что три поляризованных объекта при взаимодействии дают единицу. Как видно из Янтры локи 6 здесь наличествует и лока 2 с известными законами (-)*(-) = +; (+)*(+) = +; (+)*(-) = (-), где С = -, а 0 = +. Если бы в истории математики «корень кубический» из «минус» обозначили как ещё одну разновидность «мнимых чисел», то в итоге получили бы шестиполярную алгебру, где корень третьей степени из «минус» и была бы полярность А. Правда, тогда обнаружили бы и «трехполярные числа».

Семиполярное пространство

Янтра семиполярного пространства


Янтра локи 7 1. A B C D E F
2. B D F A C E
3. C F B E A D
4. D A E B F C
5. E C A F D B
6. F E D C B A
7. 0 0 0 0 0 0

Эта Янтра представляет так же особенную локу тем, что здесь три пары полярностей, которые дают единицу и, вместе с тем, две «тройки», которые дают единицу: (А)*(F) = 0, (B)*(E) = 0, (C)*(D) = 0; (A)*(B)*( D) = 0, (C)*(E)*(F) = 0. Лока 7 всецело соответствует законам отношения цветов в свете. Если А ? «голубому», В ? «желтому», D ? «пурпурному» , то «голубой» * «желтый» * «пурпурный» = «белый» . Если F ? «красному», Е ? «синему», С ? «зелёному» , то «красный» * «синий» * «зелёный» = «белый» .

При этом:

«голубой» * «красный» = «белый»,

«желтый» * «синий» = «белый»,

«пурпурный» * «зелёный» = «белый» .

Более того, согласно Янтры 7:

(А)*(В) = С, то есть «голубой» * «желтый» = «зелёный» ,

(В)*(D) = F, то есть «желтый» * «пурпурный» = «красный» ,

(A)*(D) = Е, то есть «голубой» * «пурпурный» = «синий» ,

(С)*(F) = B, то есть «зелёный» * «красный» = «желтый» ,

(С)*(Е) = А, то есть «зелёный» * «синий» = «голубой» ,

(Е)*(F) = D, то есть «синий» * «красный» = «пурпурный» .

Это и есть свойства цветов солнечного света, а, следовательно, анализатора зрения. Можно теперь отметить, что нечётные локи 3, 5, 7 и другие не имеют включений в себя иных лок, как например, лока 4 и лока 6 включают в себя локу 2.

Восьмиполярное пространство

Янтра восьмиполярного пространства


Янтра локи 8 1. A B C D E F G
2. B D F 0 B D F
3. C F A D G B E
4. D 0 D 0 D 0 D
5. E B G D A F C
6. F D B 0 F D B
7. G F E D C B A
8. 0 0 0 0 0 0 0
"Расщепленные" комплексные числа. 1. ? ? ? - -? -? -?
2. ? - -? + ? - -?
3. ? ? ? - -? ? -?
4. - + - + - + -
5. -? ? -? - ? -? ?
6. -? - ? + -? - ?
7. -? -? -? - ? ? ?
8. + + + + + + +

Из этой Янтры очевидным является то, что она включает в себя локу 2 ( "действительные числа") и локу 4 ( "комплексные числа"). Мы уже знаем, что лока 4 была получена в стихии «мнимых чисел». Теперь, с использованием известных в математике обозначений запишем D ? ?, B ? ?, F ? ??, 0 ? +. В получается, что А это корень квадратный из ?. Обозначим его ?. Теперь ?2 = ?, ?3 = ?, ?4 = ?2 = ?, ?5 = ? ?, ?6 = ??, ?7 = ???, ?8 = ?4 = +. Итак, локу 8 можно назвать «расщеплёнными» комплексными числами. В Янтре мы видим две локи «комплексных чисел». Такое «расщепление» можно продолжить. Следующей будет лока 16, затем 32, 64 и т.д. Однако, как видим, пристрастие к «действительным числам» сделало невидимыми другие равноправные локи. Всякая лока, несмотря на возможное включение в себя лок меньшего размера, обязательно «добавляет» собственные законы отношений. Например, в локе 8 выполняются законы локи 2 как D2 = 0, то есть (?)*(?) = +; также выполняются законы локи 3 (А)*(В)*(Е) = 0, (C)*(F)*(G) = 0; кроме того, выполняются законы локи 4 (B)*(F) = 0, то есть (?)*(??) = +, а также локи 6 (А)*(С)*(D) = 0. Лока 8 содержит в себе и законы парных отношений локи 7. Здесь так же три пары (А)*(G) = 0, (B)*(F) = 0, (C)*(E) = 0.

Однако лока 8 «соизмерима» локой 2, а нечётные локи 3, 5, 7 не содержат ни одного закона двухполярности. Это значит, что высказывания локи 8 можно конформно отобразить на обыденные понятия линейного ума, но высказывания лок 3, 5, 7 трансцендентальны для этого вида ума.

Пространство любого числа полярностей

Плоскостная лока n - полярностей


1. Число полярностей в локе влияет на законы отношений. Однако есть закономерности при переходе от локи к локе.

2. В чётных локах будет такой «средний» объект С, что С + С = 0.

3. Доказано, что обязан быть нуль в каждой локе такой, что для любого Х будет Х + 0 = Х.

4. Обязана быть хотя бы одна пара объектов Х, Y таких, что X + Y = 0.

Теорема 5.

Если в локе допускается взаимоотношение полярностей А + А, то любая другая полярность образуется некоторым числом полярностей А.

Доказательство.

1. По аксиоме постановки в соответствие взаимодействию А + А ставим в соответствие некоторое В, то есть А + А = В.

2. Тогда для другой пара А + В = С можно записать А + (А + А) = С, то есть 3А = С. Для А + С = D можно записать А + 3А = D, то есть D = 4А. и так далее.

3. Поскольку лока ограничена числом n объектов, то наступит момент, когда N = n A.

Теорема 6.

В локе размером n ноль образуется взаимодействием полярности А n раз, то есть n А = 0.

Доказательство.

1. Запишем А + (В + С +…+ М) = Х так, что совокупность (В + С +…+ М) и есть все оставшиеся объекты локи, исключая А.

2. Полярность Х обязана принадлежать совокупности (В + С +…+ М). Более того, эта совокупность образована (n -1)А.

3. Итак, А + (n - 1)А = Х, то есть nА = Х.

4. Соответственно, Х + А = (n + 1)А. Но (n + 1)А = А, так как любой другой объект есть некоторое число взаимодействий А.

5. По свойствам нуля, доказанным в теореме 2 получается, что nА = 0. Иными словами, 0 является «последним» объектом в локе.

Примечание.

Попутно доказано, что после определения полярности А все остальные полярности «распределяются» по своим местам так, что последняя полярность занимает место нуля. Полярности выбираются произвольно, так же как и А, поэтому алфавитная последовательность не отражает необходимость. На месте нуля может оказаться любая полярность. Так образуются изоморфные локи. Число изоморфных лок будет равно числу полярностей в локе.